Model-Based Machine Learning for Fiber-Optic Communication Systems

Christian Häger

Joint work with: Henry D. Pfister, Rick M. Bütler, Gabriele Liga, Alex Alvarado, Christoffer Fougstedt, Lars Svensson, and Per Larsson-Edefors

(1) Department of Electrical Engineering, Chalmers University of Technology, Sweden
(2) Department of Electrical and Computer Engineering, Duke University, USA
(3) Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands
(4) Department of Computer Science and Engineering, Chalmers University of Technology, Sweden

Van der Meulen Seminar, December 13, 2019
Deep Learning [LeCun et al., 2015]
Multi-layer neural networks: impressive performance, countless applications
Multi-layer neural networks: impressive performance, countless applications

Multi-step methods for solving the propagation equation in fiber-optics
In this talk, we ...
In this talk, we ...

1. show that multi-layer neural networks and the so-called split-step method in fiber-optics have the same functional form: both alternate linear and pointwise nonlinear steps
In this talk, we . . .

1. show that multi-layer neural networks and the so-called split-step method in fiber-optics have the same functional form: both alternate linear and pointwise nonlinear steps

2. propose a model-based machine-learning approach based on parameterizing the split-step method (no black-box neural networks)
In this talk, we . . .

1. show that multi-layer neural networks and the so-called split-step method in fiber-optics have the same functional form: both alternate linear and pointwise nonlinear steps
2. propose a model-based machine-learning approach based on parameterizing the split-step method (no black-box neural networks)
3. apply the proposed approach by revisiting hardware-efficient nonlinear equalization with deep-learning tools
Outline

1. Machine Learning and Neural Networks for Communications

2. Model-Based Machine Learning for Fiber-Optic Systems

3. Nonlinear Equalization: Learned Digital Backpropagation

4. Outlook and Future Work

5. Conclusions
Outline

1. Machine Learning and Neural Networks for Communications

2. Model-Based Machine Learning for Fiber-Optic Systems

3. Nonlinear Equalization: Learned Digital Backpropagation

4. Outlook and Future Work

5. Conclusions
Supervised Learning

handwritten digit recognition (MNIST: 70,000 images)

28 × 28 pixels $\Rightarrow n = 784$

parameters to be optimized/learned
Supervised Learning

handwritten digit recognition (MNIST: 70,000 images)

How to choose $f_\theta(y)$? Deep feed-forward neural networks
Supervised Learning

handwritten digit recognition (MNIST: 70,000 images)

How to choose $f_{\theta}(y)$? Deep feed-forward neural networks

How to optimize $\theta = \{W^{(1)}, \ldots, W^{(\ell)}, b^{(1)}, \ldots, b^{(\ell)}\}$? Deep learning

\[
\min_{\theta} \sum_{i=1}^{N} \text{Loss}(f_{\theta}(y^{(i)}), x^{(i)}) \triangleq g(\theta) \quad \text{using} \quad \theta_{k+1} = \theta_k - \lambda \nabla_{\theta} g(\theta_k) \quad (1)
\]
Machine Learning for Physical-Layer Communications
Machine Learning for Physical-Layer Communications

[Shen and Lau, 2011]. Fiber nonlinearity compensation using extreme learning machine for DSP-based . . ., (OECC)
[Zibar et al., 2016]. Machine learning techniques in optical communication, (J. Lightw. Technol.)
[Kamalov et al., 2018]. Evolution from 8qam live traffic to ps 64-qam with neural-network based nonlinearity compensation . . ., (OFC)

...
Machine Learning for Physical-Layer Communications

![Diagram of end-to-end learning](image)

- [Shen and Lau, 2011], Fiber nonlinearity compensation using extreme learning machine for DSP-based . . . , (OECC)
- [Giacoumidis et al., 2015], Fiber nonlinearity-induced penalty reduction in CO-OFDM by ANN-based . . . , (Opt. Lett.)
- [Zibar et al., 2016], Machine learning techniques in optical communication, (J. Lightw. Technol.)
- [Kamalov et al., 2018], Evolution from 8qam live traffic to ps 64-qam with neural-network based nonlinearity compensation . . . , (OFC)

- [Karanov et al., 2018], End-to-end deep learning of optical fiber communications (J. Lightw. Technol.)
- [Jones et al., 2018], Deep learning of geometric constellation shaping including fiber nonlinearities, (ECOC)
- [Li et al., 2018], Achievable information rates for nonlinear fiber communication via end-to-end autoencoder learning, (ECOC)

...
Machine Learning for Physical-Layer Communications

end-to-end learning [O’Shea and Hoydis, 2017]

parameterized TX

\[T_\theta \]

communication channel

parameterized RX

\[R_\theta \]

surrogate channel

data in → data out

[Shen and Lau, 2011], Fiber nonlinearity compensation using extreme learning machine for DSP-based . . . , (OECC)

[Giacoumidis et al., 2015], Fiber nonlinearity-induced penalty reduction in CO-OFDM by ANN-based . . . , (Opt. Lett.)

[Zibar et al., 2016], Machine learning techniques in optical communication, (J. Lightw. Technol.)

[Kamalov et al., 2018], Evolution from 8qam live traffic to ps 64-qam with neural-network based nonlinearity compensation . . . , (OFC)

[Karanov et al., 2018], End-to-end deep learning of optical fiber communications (J. Lightw. Technol.)

[Jones et al., 2018], Deep learning of geometric constellation shaping including fiber nonlinearities, (ECOC)

[Li et al., 2018], Achievable information rates for nonlinear fiber communication via end-to-end autoencoder learning, (ECOC)

[O’Shea et al., 2018], Approximating the void: Learning stochastic channel models from observation with variational GANs, (arXiv)

[Ye et al., 2018], Channel agnostic end-to-end learning based communication systems with conditional GAN, (arXiv)
Machine Learning for Physical-Layer Communications

Using neural networks for $T_\theta, R_\theta, C_\theta$

- How to choose network architecture (#layers, activation function)?
- How to initialize parameters?
- How to interpret solutions? Any insight gained?
- ...
Machine Learning for Physical-Layer Communications

Using neural networks for \mathcal{T}_θ, \mathcal{R}_θ, C_θ

- How to choose network architecture (#layers, activation function)? X
- How to initialize parameters? X
- How to interpret solutions? Any insight gained? X
- ...

Model-based learning: sparse signal recovery [Gregor and Lecun, 2010], [Borgerding and Schniter, 2016], neural belief propagation [Nachmani et al., 2016], radio transformer networks [O'Shea and Hoydis, 2017], ...
Outline

1. Machine Learning and Neural Networks for Communications

2. Model-Based Machine Learning for Fiber-Optic Systems

3. Nonlinear Equalization: Learned Digital Backpropagation

4. Outlook and Future Work

5. Conclusions
Fiber-optic systems enable **data traffic over very long distances** connecting cities, countries, and continents.
Fiber-optic systems enable **data traffic over very long distances** connecting cities, countries, and continents.

- **Dispersion**: different wavelengths travel at different speeds (linear)
- **Kerr effect**: refractive index changes with signal intensity (nonlinear)
Channel Modeling

nonlinear Schrödinger equation

0

L

z
Channel Modeling

- Sampling over a fixed time interval $\implies F : \mathbb{C}^n \rightarrow \mathbb{C}^n$
Channel Modeling

\[\frac{d u(z)}{d z} = A u(z) + j \gamma \rho(u(z)) \]

\(u(0) = x \)

Sampling over a fixed time interval \(\implies F : \mathbb{C}^n \rightarrow \mathbb{C}^n \)
Channel Modeling

\[\frac{du(z)}{dz} = Au(z) + j\gamma \rho(u(z)) \]

\[u(0) = x \quad \text{time-discretized nonlinear Schrödinger equation} \quad y = u(L) \]

- Sampling over a fixed time interval \(\implies \mathcal{F} : \mathbb{C}^n \to \mathbb{C}^n \)
- **Split-step method** with \(M \) steps (\(\delta = L/M \)):
Channel Modeling

\[\frac{du(z)}{dz} = Au(z) \]

\[u(0) = x \quad \text{time-discretized nonlinear Schrödinger equation} \]

\[y = u(L) \]

- Sampling over a fixed time interval \(\implies \mathcal{F} : \mathbb{C}^n \rightarrow \mathbb{C}^n \)
- Split-step method with \(M \) steps (\(\delta = L/M \)):
Channel Modeling

\[\frac{du(z)}{dz} = Au(z) \]

\[u(0) = x \quad \text{time-discretized nonlinear Schrödinger equation} \]

\[y = u(L) \]

- Sampling over a fixed time interval \(\Rightarrow F : \mathbb{C}^n \rightarrow \mathbb{C}^n \)
- **Split-step method** with \(M \) steps \((\delta = L/M) \):

\[H_k = e^{j\frac{\beta_2}{2}\delta \omega_k^2} \quad \text{group velocity dispersion (all-pass filter)} \]
Channel Modeling

\[\frac{du(z)}{dz} = \rho(x) = |x|^2 x \text{ element-wise} \]

\[u(0) = x \quad \text{time-discretized nonlinear Schrödinger equation} \quad y = u(L) \]

- Sampling over a fixed time interval \(\Rightarrow \mathcal{F}: \mathbb{C}^n \rightarrow \mathbb{C}^n \)
- **Split-step method** with \(M \) steps (\(\delta = L/M \)):

\[H_k = e^{j \frac{\beta_2}{2} \delta \omega_k^2} \quad \text{group velocity dispersion (all-pass filter)} \]
Channel Modeling

\[\frac{du(z)}{dz} = + j\gamma \rho(u(z)) \quad \rho(x) = |x|^2 x \text{ element-wise} \]

\[u(0) = x \quad \text{time-discretized nonlinear Schrödinger equation} \]

\[y = u(L) \]

- Sampling over a fixed time interval \(\implies \mathcal{F} : \mathbb{C}^n \rightarrow \mathbb{C}^n \)
- **Split-step method** with \(M \) steps (\(\delta = L/M \)):

\[H_k = e^{j \frac{\beta_2}{2} \delta \omega_k^2} \]

\[\sigma_\delta(x) = xe^{j\gamma \delta |x|^2} \quad \text{Kerr effect} \]

\[\text{group velocity dispersion (all-pass filter)} \]
Channel Modeling

\[\frac{du(z)}{dz} = Au(z) + j\gamma \rho(u(z)) \]

\[\rho(x) = |x|^2 x \text{ element-wise} \]

\[u(0) = x \quad \Rightarrow \quad y = u(L) \]

- Sampling over a fixed time interval \(\Rightarrow F : \mathbb{C}^n \rightarrow \mathbb{C}^n \)
- Split-step method with \(M \) steps \((\delta = L/M) \):

\[H_k = e^{j\frac{\beta^2}{2}\delta \omega_k^2} \]

\[\sigma_\delta(x) = xe^{j\gamma \delta |x|^2} \text{ Kerr effect} \]

\[\text{group velocity dispersion (all-pass filter)} \]
Channel Modeling

\[\frac{du(z)}{dz} = Au(z) + j\gamma \rho(u(z)) \]

\(\rho(x) = |x|^2 x \) element-wise

\[u(0) = x \rightarrow \text{time-discretized nonlinear Schrödinger equation} \rightarrow y = u(L) \]

- Sampling over a fixed time interval \(\implies \mathcal{F} : \mathbb{C}^n \rightarrow \mathbb{C}^n \)
- **Split-step method** with \(M \) steps (\(\delta = L/M \)):

\[\sigma_\delta(x) = xe^{j\gamma \delta |x|^2} \]

Kerr effect

\[H_k = e^{j\frac{\beta_2}{2} \delta \omega_k^2} \]

group velocity dispersion (all-pass filter)
Deep Learning [LeCun et al., 2015]

Deep Q-Learning [Mnih et al., 2015]

ResNet [He et al., 2015]

[Du and Lowery, 2010]

[SpM, CD1, CD2, SPM, CD1, CD2]

[Nakashima et al., 2017]
Parameterizing the Split-Step Method

multi-layer neural network:

\[
\begin{align*}
W^{(1)} & \quad b^{(1)} \\
& \quad \cdots \\
W^{(2)} & \quad b^{(2)} \\
& \quad \cdots \\
\cdots & \\
W^{(\ell)} & \quad b^{(\ell)}
\end{align*}
\]
Parameterizing the Split-Step Method

multi-layer neural network:

\[W^{(1)} \rightarrow b^{(1)} \rightarrow W^{(2)} \rightarrow b^{(2)} \rightarrow \ldots \rightarrow W^{(\ell)} \rightarrow b^{(\ell)} \]

activation function

\[\sigma(x) = x e^{i\gamma \delta |x|^2} \]

split-step method:

\[A_\delta \rightarrow A_\delta \rightarrow A_\delta \rightarrow \ldots \rightarrow A_\delta \]

\[\sigma(x) = x e^{i\gamma \delta |x|^2} \]
Parameterizing the Split-Step Method

multi-layer neural network:

\[W^{(1)} b^{(1)} \rightarrow \ldots \rightarrow W^{(2)} b^{(2)} \rightarrow \ldots \rightarrow W^{(\ell)} b^{(\ell)} \]

activation function

\[\sigma(x) = xe^{i\gamma \delta |x|^2} \]

split-step method:

\[A^{(1)} \rightarrow \ldots \rightarrow A^{(2)} \rightarrow \ldots \rightarrow A^{(M)} \]

\[\sigma(x) = xe^{i\gamma \delta |x|^2} \]

[Häger & Pfister, 2018], Nonlinear Interference Mitigation via Deep Neural Networks, (OFC)
[Häger & Pfister, 2018], Deep Learning of the Nonlinear Schrödinger Equation in Fiber-Optic Communications, (ISIT)
Parameterizing the Split-Step Method

multi-layer neural network:

\[W^{(1)} \rightarrow b^{(1)} \rightarrow W^{(2)} \rightarrow \ldots \rightarrow W^{(\ell)} \rightarrow \ldots \rightarrow W^{(M)} \]

activation function:

\[\sigma(x) = x e^{j\gamma \delta |x|^2} \]

split-step method:

\[A^{(1)} \rightarrow \ldots \rightarrow A^{(2)} \rightarrow \ldots \rightarrow A^{(M)} \]

Parameterized model \(f_\theta \) with \(\theta = \{A^{(1)}, \ldots, A^{(M)}\} \)
Parameterizing the Split-Step Method

- Parameterized model f_θ with $\theta = \{A^{(1)}, \ldots, A^{(M)}\}$
- Includes as special cases: step-size optimization, “placement” of nonlinear operator, higher-order dispersion, matched filtering . . .
Possible Applications
Possible Applications

- Parameterized TX: \(\mathcal{T}_\theta \)
- Amplifier
- Optical fiber
- Parameterized RX: \(\mathcal{R}_\theta \)
- Surrogate channel: \(\mathcal{C}_\theta \)

Data in: \(\rightarrow \mathcal{T}_\theta \rightarrow \text{amplifier} \rightarrow \mathcal{R}_\theta \rightarrow \text{data out} \)
Possible Applications

Pre-distortion [Essiambre and Winzer, 2005], [Roberts et al., 2006], split nonlinear equalization [Lavery et al., 2016]

Fine-tune with experimental data, reduce simulation time [Leibrich and Rosenkranz, 2003], [Li et al., 2005]
Possible Applications

pre-distortion [Essiambre and Winzer, 2005], [Roberts et al., 2006], split nonlinear equalization [Lavery et al., 2016]

nonlinear equalization (this talk)

fine-tune with experimental data, reduce simulation time
[Leibrich and Rosenkranz, 2003], [Li et al., 2005]

Model-based learning approaches

- How to choose network architecture (#layers, activation function)? ✓
- How to initialize parameters? ✓
- How to interpret solutions? Any insight gained? ✓
Outline

1. Machine Learning and Neural Networks for Communications

2. Model-Based Machine Learning for Fiber-Optic Systems

3. Nonlinear Equalization: Learned Digital Backpropagation

4. Outlook and Future Work

5. Conclusions
Digital Backpropagation

\(\sigma_\delta(x) = xe^{j\gamma \delta |x|^2} \) Kerr effect

\[H_k = e^{j\frac{\beta_2}{2} \delta \omega_k^2} \] group velocity dispersion (all-pass filter)
Digital Backpropagation

\(\sigma_\delta (x) = xe^{j\gamma (-\delta) |x|^2} \) \text{Kerr effect}

\(H_k = e^{j \frac{\beta_2}{2} (-\delta) \omega_k^2} \) \text{group velocity dispersion (all-pass filter)}
Digital Backpropagation

\[\sigma_\delta(x) = xe^{j\gamma(-\delta)|x|^2} \]
Kerr effect

\[H_k = e^{j\frac{\beta_2}{2}(-\delta)\omega_k^2} \]
group velocity dispersion (all-pass filter)

- Fiber with negated parameters \((\beta_2 \rightarrow -\beta_2, \gamma \rightarrow -\gamma)\) would perform perfect channel inversion [Paré et al., 1996] (ignoring attenuation)
Digital Backpropagation

\[
\sigma_\delta(x) = x e^{j\gamma(-\delta)|x|^2}
\]

Kerr effect

\[
H_k = e^{j\frac{\beta_2}{2}(-\delta)\omega_k^2}
\]

group velocity dispersion (all-pass filter)

- Fiber with negated parameters \((\beta_2 \rightarrow -\beta_2, \gamma \rightarrow -\gamma)\) would perform perfect channel inversion [Paré et al., 1996] (ignoring attenuation)

- Digital backpropagation: invert a partial differential equation in real time [Essiambre and Winzer, 2005], [Roberts et al., 2006], [Li et al., 2008], [Ip and Kahn, 2008]
Digital Backpropagation

\[H_k = e^{j \frac{\beta_2}{2} (-\delta) \omega_k^2} \]

\[\sigma_\delta(x) = xe^{j\gamma(-\delta)|x|^2} \]
Kerr effect

- Fiber with negated parameters \((\beta_2 \rightarrow -\beta_2, \gamma \rightarrow -\gamma)\) would perform perfect channel inversion [Paré et al., 1996] (ignoring attenuation)
- **Digital backpropagation**: invert a partial differential equation in real time [Essiambre and Winzer, 2005], [Roberts et al., 2006], [Li et al., 2008], [Ip and Kahn, 2008]
- Widely considered to be impractical (**too complex**): linear equalization is already one of the **most power-hungry DSP blocks** in coherent receivers
Real-Time Digital Backpropagation

[Crivelli et al., 2014]
Real-Time Digital Backpropagation

[Crivelli et al., 2014]
Real-Time Digital Backpropagation

[Crivelli et al., 2014]

Our approach: deep learning and model compression

- Joint optimization,
- pruning, and
- quantization

of all linear steps \(\Rightarrow\) hardware-efficient digital backpropagation
Learned Digital Backpropagation
Learned Digital Backpropagation

TensorFlow implementation of the computation graph $f_\theta(y)$:

\[h^{(1)} \]
\[h^{(2)} \]
\[\sigma_1(x) = xe^{\gamma_1|x|^2} \]
\[\sigma_2(x) = xe^{\gamma_2|x|^2} \]
\[\sigma_M(x) = xe^{\gamma_M|x|^2} \]
Learned Digital Backpropagation

TensorFlow implementation of the computation graph $f_\theta(y)$:

Deep learning of parameters $\theta = \{h^{(1)}, \ldots, h^{(M)}\}$:

$$\min_\theta \sum_{i=1}^N \text{Loss}(f_\theta(y^{(i)}), x^{(i)}) \triangleq g(\theta)$$

mean squared error

using $\theta_{k+1} = \theta_k - \lambda \nabla_\theta g(\theta_k)$

Adam optimizer, fixed learning rate
Learned Digital Backpropagation

TensorFlow implementation of the computation graph $f_\theta(y)$:

$$h(1) = A_\delta$$
$$h(2) = A_\delta$$
$$...$$
$$h(M) = A_\delta$$

Deep learning of parameters $\theta = \{h^{(1)}, \ldots, h^{(M)}\}$:

$$\min_\theta \sum_{i=1}^N \text{Loss}(f_\theta(y^{(i)}), x^{(i)}) \triangleq g(\theta)$$

mean squared error

using $\theta_{k+1} = \theta_k - \lambda \nabla_\theta g(\theta_k)$

Adam optimizer, fixed learning rate

Iteratively prune (set to 0) outermost filter taps during gradient descent
Revisiting Ip and Kahn (2008)

Parameters similar to [Ip and Kahn, 2008]:
- 25 × 80 km SSFM
- Gaussian modulation
- RRC pulses (0.1 roll-off)
- 10.7 Gbaud
- 2 samples/symbol processing
- single channel, single pol.
Revisiting Ip and Kahn (2008)

Parameters similar to [Ip and Kahn, 2008]:
- 25×80 km SSFM
- Gaussian modulation
- RRC pulses (0.1 roll-off)
- 10.7 Gbaud
- 2 samples/symbol processing
- single channel, single pol.

- $\gg 1000$ total taps (70 taps/step) $\Rightarrow > 100 \times$ complexity of EDC
Revisiting Ip and Kahn (2008)

Parameters similar to [Ip and Kahn, 2008]:
- 25 x 80 km SSFM
- Gaussian modulation
- RRC pulses (0.1 roll-off)
- 10.7 Gbaud
- 2 samples/symbol processing
- single channel, single pol.

- $\gg 1000$ total taps (70 taps/step) $\implies > 100 \times$ complexity of EDC
- Learned approach uses only 77 total taps: alternate 5 and 3 taps/step and use different filter coefficients in all steps [Häger and Pfister, 2018a]
Revisiting Ip and Kahn (2008)

- **Parameters similar to [Ip and Kahn, 2008]:**
 - 25 × 80 km SSFM
 - Gaussian modulation
 - RRC pulses (0.1 roll-off)
 - 10.7 Gbaud
 - 2 samples/symbol processing
 - single channel, single pol.

- **•**
 - ≫ 1000 total taps (70 taps/step) \(\implies\) > 100× complexity of EDC

- Learned approach uses only 77 total taps: alternate 5 and 3 taps/step and use different filter coefficients in all steps [Häger and Pfister, 2018a]

- Can outperform “ideal DBP” in the nonlinear regime [Häger and Pfister, 2018b]
Real-Time ASIC Implementation

[Crivelli et al., 2014]
Real-Time ASIC Implementation

[Crivelli et al., 2014]

[Fougstedt et al., 2017], Time-domain digital back propagation: Algorithm and finite-precision implementation aspects, (OFC)
[Fougstedt et al., 2018], ASIC implementation of time-domain digital back propagation for coherent receivers, (PTL)
[Sherborne et al., 2018], On the impact of fixed point hardware for optical fiber nonlinearity compensation algorithms, (JLT)
Real-Time ASIC Implementation

- Our linear steps are very short symmetric FIR filters (as few as 3 taps)
Real-Time ASIC Implementation

- Our linear steps are very short symmetric FIR filters (as few as 3 taps)
- 28-nm ASIC at 416.7 MHz clock speed (40 GHz signal)
 - Only 5-6 bit filter coefficients via learned quantization
 - Hardware-friendly nonlinear steps (Taylor expansion)
 - All FIR filters are fully reconfigurable

[Fougstedt et al., 2018], ASIC implementation of time-domain digital backpropagation with deep-learned chromatic dispersion filters, (ECOC)
Real-Time ASIC Implementation

- Our linear steps are very short symmetric FIR filters (as few as 3 taps)
- 28-nm ASIC at 416.7 MHz clock speed (40 GHz signal)
 - Only 5-6 bit filter coefficients via learned quantization
 - Hardware-friendly nonlinear steps (Taylor expansion)
 - All FIR filters are fully reconfigurable

[Fougstedt et al., 2018], ASIC implementation of time-domain digital backpropagation with deep-learned chromatic dispersion filters, (ECOC)
Real-Time ASIC Implementation

- Our linear steps are very short symmetric FIR filters (as few as 3 taps)
- 28-nm ASIC at 416.7 MHz clock speed (40 GHz signal)
 - Only 5-6 bit filter coefficients via learned quantization
 - Hardware-friendly nonlinear steps (Taylor expansion)
 - All FIR filters are fully reconfigurable
- < 2× power compared to EDC [Crivelli et al., 2014, Pillai et al., 2014]

[Fougstedt et al., 2018], ASIC implementation of time-domain digital backpropagation with deep-learned chromatic dispersion filters, (ECOC)
Why Does The Learning Approach Work?

Previous work: design a single filter or filter pair and **use it repeatedly**.

⇒ Good overall response only possible with **very long** filters.

From [Ip and Kahn, 2009]:

- “We also note that [...] 70 taps, is much larger than expected”
- “This is due to amplitude ringing in the frequency domain”
- “Since backpropagation requires multiple iterations of the linear filter, amplitude distortion due to ringing accumulates (Goldfarb & Li, 2009)”
Why Does The Learning Approach Work?

Previous work: design a single filter or filter pair and use it repeatedly.

⇒ Good overall response only possible with very long filters.

From [Ip and Kahn, 2009]:

- “We also note that [...] 70 taps, is much larger than expected”
- “This is due to amplitude ringing in the frequency domain”
- “Since backpropagation requires multiple iterations of the linear filter, amplitude distortion due to ringing accumulates (Goldfarb & Li, 2009)”

The learning approach uncovered that there is no such requirement!

[Lian, Häger, Pfister, 2018], What can machine learning teach us about communications? (ITW)
Why Does The Learning Approach Work?

Previous work: design a single filter or filter pair and use it repeatedly.

⇒ **Good overall response** only possible with **very long** filters.

Sacrifice individual filter accuracy, but **different response per step.**

⇒ **Good overall response** even with **very short** filters by joint optimization.
Outline

1. Machine Learning and Neural Networks for Communications

2. Model-Based Machine Learning for Fiber-Optic Systems

3. Nonlinear Equalization: Learned Digital Backpropagation

4. Outlook and Future Work

5. Conclusions
Wideband Signals and Subband Processing

wideband signal
Wideband Signals and Subband Processing

- Subband processing: split received signal into \(N \) parallel signals

[Taylor, 2008], Compact digital dispersion compensation algorithms, (OFC)
[Ho, 2009], Subband equaliser for chromatic dispersion of optical fibre, (Electronics Lett.)
[Slim et al., 2013], Delayed single-tap frequency-domain chromatic-dispersion compensation, (PTL)
[Nazarathy and Tolmachev, 2014], Subbanded DSP architectures based on underdecimated filter banks . . . , (Signal Proc. Mag.)
[Mateo et al., 2010], Efficient compensation of inter-channel nonlinear effects via digital backward . . . , (Opt. Express)
[Ip et al., 2011], Complexity versus performance tradeoff for fiber nonlinearity compensation . . . (OFC)
[Oyama et al., 2015], Complexity reduction of perturbation-based nonlinear compensator by sub-band processing, (OFC)
...
Wideband Signals and Subband Processing

- Subband processing: split received signal into N parallel signals
- Parameterizing the split-step method for coupled Schrödinger equations [Leibrich and Rosenkranz, 2003] \Rightarrow low-complexity candidate for wideband processing [Häger and Pfister, 2018c]
- Similar structure as popular convolutional neural networks (alternating filter banks and nonlinearities)

[Taylor, 2008], Compact digital dispersion compensation algorithms, (OFC)
[Ho, 2009], Subband equaliser for chromatic dispersion of optical fibre, (Electronics Lett.)
[Slim et al., 2013], Delayed single-tap frequency-domain chromatic-dispersion compensation, (PTL)
[Nazarathy and Tolmachev, 2014], Subbanded DSP architectures based on underdecimated filter banks . . . , (Signal Proc. Mag.)
[Mateo et al., 2010], Efficient compensation of inter-channel nonlinear effects via digital backward . . . , (Opt. Express)
[Ip et al., 2011], Complexity versus performance tradeoff for fiber nonlinearity compensation . . . (OFC)
[Oyama et al., 2015], Complexity reduction of perturbation-based nonlinear compensator by sub-band processing, (OFC)

...
Polarization-Dependent Impairments

\[L \times \star = \text{multiplication (rotation)} \]

\[\star = \text{convolution} \]

[Crivelli et al., 2014]
Polarization-Dependent Impairments

- Combining digital backpropagation with compensation of polarization-mode dispersion

[Goroshko et al., 2016], Overcoming performance limitations of digital back propagation due to polarization mode dispersion, \textit{(CTON)}

[Czegledi et al., 2017], Digital backpropagation accounting for polarization-mode dispersion, \textit{(Opt. Express)}

[Liga et al., 2018], A PMD-adaptive DBP receiver based on SNR optimization, \textit{(OFC)}
Polarization-Dependent Impairments

- Combining digital backpropagation with compensation of polarization-mode dispersion
- Promising performance–complexity tradeoff using model-based factorization approach and machine learning [Häger et al., 2020]

[Goroshko et al., 2016], Overcoming performance limitations of digital back propagation due to polarization mode dispersion, (CTON)
[Czegledi et al., 2017], Digital backpropagation accounting for polarization-mode dispersion, (Opt. Express)
[Liga et al., 2018], A PMD-adaptive DBP receiver based on SNR optimization, (OFC)
[Häger et al., 2020], Model-based machine learning for joint digital backpropagation and PMD compensation, (OFC)
Ongoing and Future Work

- **Experimental Demonstrations:** stay tuned . . .
- **How to integrate** into a standard coherent receiver DSP chain?
- **How to successfully train** in the presence of practical impairments (laser phase noise, transceiver noise, . . .)
- **How realistic is online learning** in custom DSP? (We only have “hundreds” of parameters, not “thousands” or “millions” like neural networks)
Conclusions
Conclusions

neural-network-based ML

universal function approximators

 good designs require
 experience and fine-tuning

 black boxes,
 difficult to “open”
Conclusions

<table>
<thead>
<tr>
<th>neural-network-based ML</th>
<th>model-based ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>universal function approximators</td>
<td>application-tailored</td>
</tr>
<tr>
<td>good designs require experience and fine-tuning</td>
<td>relies on domain knowledge (algorithms, physics, . . .)</td>
</tr>
<tr>
<td>black boxes, difficult to “open”</td>
<td>familiar building blocks (e.g., FIR filters) can enable interpretability</td>
</tr>
</tbody>
</table>
Conclusions

<table>
<thead>
<tr>
<th>neural-network-based ML</th>
<th>model-based ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>universal function approximators</td>
<td>application-tailored</td>
</tr>
<tr>
<td>good designs require experience and fine-tuning</td>
<td>relies on domain knowledge (algorithms, physics, ...)</td>
</tr>
<tr>
<td>black boxes, difficult to “open”</td>
<td>familiar building blocks (e.g., FIR filters) can enable interpretability</td>
</tr>
</tbody>
</table>

Thank you!
References I

Onsager-corrected deep learning for sparse linear inverse problems.
In Proc. IEEE Global Conf. Signal and Information Processing (GlobalSIP), Washington, DC.

Architecture of a single-chip 50 Gb/s DP-QPSK/BPSK transceiver with electronic dispersion compensation
for coherent optical channels.

Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul
optical communication systems.

Fibre nonlinearities in electronically pre-distorted transmission.
In Proc. European Conf. Optical Communication (ECOC), Glasgow, UK.

Learning fast approximations of sparse coding.

Deep learning of the nonlinear Schrödinger equation in fiber-optic communications.
In Proc. IEEE Int. Symp. Information Theory (ISIT), Vail, CO.
Nonlinear interference mitigation via deep neural networks.
In *Proc. Optical Fiber Communication Conf. (OFC)*, San Diego, CA.

Wideband time-domain digital backpropagation via subband processing and deep learning.
In *Proc. European Conf. Optical Communication (ECOC)*, Rome, Italy.

Model-based machine learning for joint digital backpropagation and PMD compensation.
In *Proc. Optical Fiber Communication Conf. (OFC)*, San Diego, CA.

Deep residual learning for image recognition.

Compensation of dispersion and nonlinear impairments using digital backpropagation.

Nonlinear impairment compensation using backpropagation.
Optical Fiber New Developments, Chapter 10.

The benefit of split nonlinearity compensation for single-channel optical fiber communications.
References III

Deep learning.

Efficient numerical simulation of multichannel WDM transmission systems limited by XPM.

Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing.
Opt. Express, 16(2):880–888.

Bit-to-symbol mapping in LDPC coded modulation.

Human-level control through deep reinforcement learning.

Learning to decode linear codes using deep learning.
In *Proc. Annual Allerton Conference on Communication, Control, and Computing*, Monticello, IL.
References IV

