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Abstract

We discuss shaping codes in an elementary way,
which is from the standpoint of enumerative cod-
ing. Then we show how to combine our shaping
methods with a error correcting codes. It turns
out that we can easily gain a decibel by using
shaping techniques, with or without error correc-
tion coding. Finally we describe the combination
of our shaping method with the ‘pragmatic’ ap-
proach to coded modulation, which can be real-
ized with VLSI circuits that are widely available.

1 PAM

Consider uncoded transmission over an additive
Gaussian noise channel, i.e.

n:Xt+Nt,f0rt:1,2,"',

where the noise variables IV, are independent and
normally distributed, with mean 0 and variance
o?. The (independent) input symbols X; assume
values in the alphabet {1—M,3—M,---, M —1},
each value has probability of occurrence of 1/M,
and the information rate R = log M bits per
transmission'. The squared Euclidean distance
d% between any pair of different input sequences
is larger than or equal to 4. For the average in-
put power P* we have that P*™ = (M? —1)/3.
For example, if M = 4 the rate R = 2 bits per
transmission, and P® = 5. Error probabilities
are determined by the variance o2 of the noise.
The signalling method described above is
known as pulse amplitude modulation (PAM). In
what follows we will discuss alternative methods.
The asymptotic gain of an alternative method

!The base of the log is 2.

with rate R and minimum squared Euclidean dis-

tance df ., over the PAM case, is defined as
228 — 1 d}
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To understand this definition, note that we can
associate the power (22% —1)/3 to a PAM-system
with rate R.

2 Block shaping

We first consider transmission of sequences with
block length 1. The energy of an input sequence

2l = x 292y is defined as

E(") 2 > i

t=1,T

In a PAM block system, the signal points form
a T-dimensional cube. It is well known (see [3])
that we can save energy, at most me/6 = 1.53
dB, if we choose a spherical signal structure. Us-
ing spherical signal structures is called shaping.
It is easy to see that a signal structure achieves
the lowest possible average energy iff all (lattice-)
points with energy smaller than E,,,, are signal
points, where F,,., is the maximal energy over
all signal points. In other words a set of energy-
constrained sequences is minimizes the average
energy.

We start our investigations with a simple shap-
ing problem. Let 7" = 4 and E,,.. = 28. How
many sequences x! are there with components
in {---,-3,-1,+1,+3,---} and energy E(z") <
E,ax? Are there efficient ways to enumerate these
sequences 7 The answer to this questions is affir-
mative and follows from the work of Schalkwijk
[6] and Cover [2].

To make things simple we restrict ourselves first
to the ‘one-sided’ alphabet {1, 3, ---} and consider
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Figure 1: Trellis for T'=4 and F,,,, = 28.

sequences u’ over this alphabet with energy not
larger than 28. Next, we observe that the energy
of the first ¢ components in a sequence equals t
plus a multiple of 8. Any sequence can be re-
garded as a path in a trellis, the states corre-
sponding to energies, the branches to a symbol
in {1,3,---} (see figure). A path corresponding
to one of our energy-constrained sequences starts
in the state with energy 0 and ends in one of the
final states, having energy 4, 12, 20 or 28. In
the figure the energy of a state is denoted by a
small number. The largely denoted number in
each state is the number of alternatives A that
lead from this state to a final state. These num-
bers can be computed recursively, starting from
the final states as follows. For each ¢ consider only
those e such that e — ¢ is a multiple of 8. Then

A(T)e) = 1,

for 0 <e < E,,., and 0 otherwise,
S A(t+1e+u’),

ue{1,3,}

fort=T-1,7-2,---,0.

A(tye) =

From the figure we can see that A(0,0) = 19,
which means that there are 19 sequences with
components in {1,3,---} having energy not ex-
ceeding 28. The rate of this one-sided code is
R, = (log19)/4 = 1.062. We can similarly deter-
mine recursively the number of sequences with a
given energy. It turns out that there is one se-
quence with energy 4, four with energy 12, six
with energy 20, and eight with energy 28. There-
fore the average energy is (4 +4-124+6-20+ 8-
28)/19 = 20.842, and P* = 5.211. There is no
one-sided code with 19 codewords having smaller
average power.

Now that we have computed the number of se-
quences of length 4 with components in {1,3,---}

with energy not larger than 28, the question arises
how we can enumerate these sequences. In other
words, does there exist an ordering that gives the
sequences an index which can easily be computed
from the sequence and vice versa 7 It follows
from [6] and [2] that, if we assume a lexicograph-
ical ordering over the sequences, the index can be
determined efficiently from the sequence. It turns
out that

i(ul) =

2. X

t=1,T w<usVwe{l,3,--}

Alt, D0 uz+w?).

s=1,t—1

For example, i(3131) = A(1,1%) + A(3,32 + 1% +
12) = A(1,1) + A(3,11) = 11 + 2 = 13, which
can be found recursively in the array A(t,e), as
we can see.

Computing the sequence u’ with a given index
i(u”) is also not very difficult. Suppose i(u’) = 8.
Then the first component of u” can only be 1.
If it would be 3 or larger, the index of the se-

quence would be A(1,1) = 11 or more. If the
second component would also be 1, the index
would be smaller than A(2,2) = 6. With the

second component equal to 3, we would get an
index not smaller than A(2,2) = 6 and smaller
than A(2,2) + A(2,10) = 6 + 4 = 10, hence the
second component must be 3. If the third com-
ponent was 1, the index would be smaller than
A(2,2) + A(3,11) = 6 + 2 = 8. A third compo-
nent equal to 3, gives an index not smaller than
A(2,2) + A(3,11) = 6 + 2 = 8 and smaller than
A(2,2)+A(3,11)+ A(3,19) = 6+2+2 = 10, thus
the third component is also 3. The fourth com-
ponent must be 1. If it would be 3, this would
result in an index A(2,2) + A(3,11) + A(4,20) =
6+2+1=9. Conclusion is that, by compar-
ing the index with ‘index boundaries’, computed
from the array A(t, e) recursively, we can find the
sequence corresponding to a given index.

Before we consider the gain of this code, we
observe that each of the 19 sequences in this
code with components in {1,3,---} having en-
ergy not larger than 28, can easily be trans-
formed into 16 sequences with components in
{--,=3,—-1,41,43,---} and having the same
energy, by placing a sign for each of the four com-
ponents. By doing so we obtain a code with 16 -
19 = 304 sequences, which is optimal, i.e. it min-
imizes P*. The rate of this double-sided code is
R = (log304)/4 = 2.062. The minimum squared
Euclidean distance is still 4, hence by (1) the gain



of this code is G = (2%20%2-1)/(3-5.211) = 1.051
or 0.218 dB, so we have gained a little bit. It
should be noted that shaping requires constella-
tion expansion. In our example we see that signal
components can be —5 or +5, while the rate is
roughly 2. In principle there is no restriction on
these values. In practice, restrictions on the signal
amplitudes may be necessary. Such restrictions
normally do not have a big effect on the gain.

Larger gains can be obtained by increasing the
block length 7. In the table below we have listed
for several block lengths, the maximum energy
E . that gives a rate R and a gain G.

T | Epar | P* R G

4 28 | 5.211 | 2.062 | 0.218dB
8 48 | 5.169 | 2.102 | 0.509dB
16 | 80 | 4.638 | 2.064 | 0.734dB
32| 136 | 4.100 | 2.006 | 0.901dB
64 | 264 | 4.051 | 2.019 | 1.039dB

The storage complexity (array size) of this code
is quadratical in 7', the computational complex-
ity is linear. Optimal decoding (minimizing the
block-error probability) of these codes requires
Viterbi detection on the one-sided trellis. This
trellis is needed anyhow for indexing as we saw.
Threshold detection results in a small decrease in
performance.

3 Block Coding

While shaping is concerned with the shape of
the signal structure, coding has the intention to
enlarge the distances between the signal points.
This is accomplished by using Ungerboeck’s idea
of set partitioning [7]. The channel input sym-

bol set A = {--- —3,—1,+1,+3,---} is parti-
tioned into two sets, Ag 2 {-+,=3,41,45,---}
and A; 2 {---,=5,—=1,43,---}. This splitting

allows combination of uncoded (but shaped as
we shall see later) data with a binary error cor-
recting code. The idea is as follows. Take a bi-
nary error correcting code with minimum Ham-
ming distance dg min, block length 7' and rate
Ry, and assume that we have uncoded one-sided
sequences u! with the same block length, rate
R, and power P{’. We transform these uncoded
one-sided sequences into coded double-sided sig-
nals 27 componentwise. The symbol wu;, where
t =1, T from the uncoded sequence together with

the binary symbol b; of the codeword b7 deter-
mines the double-sided symbol z; according to the
table below.

bilus 1 3 5 7 9 11
0 +1 -3 +5 -7 49 -1I
1 ~1 +3 -5 47 -9 +11

Observe that the table is constructed in such a
way that a binary symbol b; = 0 produces sym-
bols in Ay and b, = 1 leads to a symbol in A;.
The absolute value of the double sided symbol z;
is equal to the one-sided symbol ;.

What about the rate of this code ? Obviously
the rate R = R, + R,. The average power of the
code is equal to the power of the one-sided signal,
ie. P% = P,

To compute the minimum squared Euclidean
distance we consider two situations. First we as-
sume that the error correcting codeword b’ is
fixed. In that case the components x; of all code-
words a7 take values in the same set A;,, where
t =1,7. All different codewords differ in at least
one component, and two different components in
a set A, for a b € {0,1} differ at least 4. There-
fore, codewords z” and &7 that result from the
same b’ have a squared Euclidean distance of 16
or more.

Secondly we have to investigate the case where
we have two codewords a7 and &' that resulted
from different binary codewords b” and b”. Con-
sider component ¢ and assume that b, # b;. Now
vy € Ay, and 7y, € A;,. The difference between
a symbol from 4, and a symbol from A, is 2 or
more. Therefore each differing component in the
binary error correcting code contributes at least 4
to the squared Euclidean distance. Since the min-
imum distance of the binary error correcting code
is dgmin we may conclude that for code words
27 and 7 that result from different binary code-
words the squared Euclidean distance is 4dp min
or more. This leads to

d2E,min = mln(167 4dH,min);
which implies that it is not useful to apply bi-
nary codes with dg i, > 4. Observe that, al-
though this is not of our concern, we could use
this method to combine also unshaped one-sided
sequences with a binary error correcting code.

Now that we have expressions for the rate, aver-
age power, and minimum squared Euclidean dis-
tance, we can compute the gains of this method



using (1). We consider two cases. First we assume
that the error correcting code is a single parity

check code. This code has rate R, = (T —1)/T
and dp min = 2, which leads to d7,,, = 8. For

each block length T" we have chosen a maximum
energy F,,.. such that the total rate R = R, + Ry
is roughly 2 bit per transmission. We have listed

this E,,.. and the resulting P*’, the rate R, and
gain GG in the table below, for several values of T

T | Epar | P™ R G

4 36 | 6.750 | 2.000 | 1.707dB

8 56 | 5.961 | 2.079 | 2.755dB

16 | 80 | 4.638 | 2.001 | 3.345dB

32| 144 | 4.336 | 2.015 | 3.726dB

64 | 264 | 4.051 | 2.004 | 3.949dB

Secondly we consider the case where an extended
Hamming code is used as binary error correcting
code. With parameter m, the number of parity
check equations of the underlying Hamming code,
this gives block length 7" = 2™ and rate R, = (T —
m—1)/T. The distance of this code is dy min = 4,
therefore dy, ;,, = 16. Again for each T', we have
chosen a maximum energy F,,., such that the
total rate R is roughly 2 bit per transmission.
Just like before we have listed this F,,., and the
resulting power P, the rate R, and gain G in
the table below, for several values of T

T | Epax | P R G

4 88 | 14.789 | 2.062 | 1.708dB
8 88 9.169 | 2.013 | 3.471dB
16 | 12 6.870 | 2.033 | 4.854dB
32| 176 | 5.280 | 2.000 | 5.787dB
64 | 296 | 4.537 | 2.007 | 6.489dB

What follows from these tables is that we can
easily gain roughly a decibel by applying shaping
techniques.

Optimal decoding for these codes is of course
guaranteed when we use the Viterbi algorithm on
the product of the shaping trellis and the cod-
ing trellis. As in Calderbank, Lee and Mazo [1]
however, we can use a suboptimal decoder which
operates on the coding trellis only, without loos-
ing too much performance.

4 A Pragmatic Approach

Viterbi, Wolf, Zehavi and Padovani described in
[8] an elegant method for trellis coded (ampli-
tude) modulation based on a convolutional code

for which there exists, by now standard, VLSI de-
coding hardware. Their technique however does
not contain shaping. We show here how to com-
bine their methods with our shaping techniques.

Just like Ungerboeck, Viterbi et al. use set par-
titioning of the channel input symbol set A =

{---,=3,=1,41,43,---}. They split this set into
four sets, Ay 2 {--,=7,+1,49,---}, Ay 2
{0, =5, 43,411}, An = {--+, =11, -3,45,

.-} and Ay 2 {---,=9,—1,+7,---}, i.e. a Gray
code splitting.

Instead of a binary error correcting block code
we have a convolutional code here. It produces
a pair of binary code symbols b} b? for each input
bit v, that enters the convolutional encoder, for
t=1,2,---

Again we assume that we have an uncoded (but
shaped) one-sided signal ujuy - - - with rate R, and
average power P?. We could try to transform
this uncoded one-sided signal into a coded double-
sided signal componentwise, just as we did before
in section 3. Therefore we construct the table
below.

bib} lue 1 3 5 7 9 11

00 +1 * x —7 49 *
01 * +3 =95 * *  +11
11 * —3 45 * * —11
10 -1 * * +7 -9 *

Suppose that the uncoded symbol v, = 5. Then
we see from this table that there are only two pos-
sible pairs bib? that lead to an x; with absolute
value 5, i.e. 01 and 11. This implies that we are
in trouble if the output of the convolutional en-
coder would be either 00 or 10. However, since
the applied convolutional code has the property
that inverting its input symbol v; results in an
inversion of the output pair bl0?, there is always
an input v; that yields either 01 or 11. The idea
is now, to apply this input to the convolutional
encoder. The channel input x; can now be de-
termined using the table. For example suppose
that the output of the convolutional code would
be 00 with input 0, and consequently 11 for input
1. Then, with u; = 5, we must set the input v; to
1. The output pair b}b? = 11 now determines, to-
gether with u; = 5, the channel symbol z; = +5,
as in the table.

It is straightforward to see that the code se-
quences that are generated by our method can
also be generated by the pragmatic encoder of



Viterbi et al. (ignoring for a moment that shap-
ing requires constellation expansion). The conse-
quence of this is that the distance structure re-
mains the same, which leads to a more or less
identical error behavior. Moreover it implies that
the original pragmatic decoder can be used.

To be able to compare the rate of our method
with that of the original pragmatic technique, we
first note that in the original pragmatic encoder
for each time unit, one information bit enters the
convolutional encoder, while the remaining R — 1
bits address a channel input symbol from one of
the four sets A;;, for some ij € {0,1}* which
is specified by the the output of the convolu-
tional encoder. In this case A = {1 — 28+ 3 —
pfttl .. 2R+l 1} and P* = (2212 —1)/3. We
can also achieve rate R by using our method, us-
ing all one-sided sequences which are composed
out of symbols from {1,3,---, 2% — 1} with
equal probability, which means that they are un-
shaped. The rate of this one-sided code is R, = R
while that of the convolutional code R, = 0
since its inputs are restricted. The average power
of the method is equal to the average power of
the unshaped one-sided code P which is also
(2282 — 1) /3. So the original pragmatic method
corresponds to our method with an unshaped one-
sided code. Now taking instead of the unshaped
code a code which is shaped we can easily gain a
decibel as we have seen in section 2.

5 Conclusions and Remarks

We have discussed shaping methods for trans-
mission in blocks. These shaping techniques are
based on enumerative source coding ideas (see [6]
and [2]). We also investigated the combination of
shaping methods with error correcting codes. It
turns out that a gain of one decibel can easily be
achieved, with and without coding. Our shaping
techniques differ from that of Laroia et al. [4] in
that we use a different ordering over the energy-
constrained sequences. Laroia et al. first or-
der the sequences according to their energy level,
and then, within the same energy level sequences
are ordered lexicographically. We apply a lexi-
cographical ordering over all energy-constrained
sequences. This reduces the storage complexity.
The well-known ‘pragmatic’ approach to coded
modulation, applies a convolutional code instead
of a block code [8]. VLSI decoding hardware ex-

ists for this code. We have demonstrated how
to combine our shaping methods with this con-
volutional coding technique, so that the decod-
ing hardware still can be used. This pragmatic
approach to shaping can easily result in an addi-
tional gain of a decibel.

What we did not do is the following. To
keep things simple we have only discussed one-
dimensional signal structures. Also we have left
out of consideration properties as ‘shaping con-
stellation expansion ratios (CER)’ and ‘peak-to-
average power ratios (PAR)’. It is however very
easy to generalize our shaping methods to higher
dimensions in such a way that desirable CER’s
and PAR’s can be achieved. Another property
that we did not bother about, is the fact that the
rates that we have found are not integer. Prun-
ing of the trellis however can be used to over-
come this difficulty. Finally we mention that we
did only discuss block shaping here. In combi-
nation with convolutional code however stream
shaping seems more appropriate. Therefore it
needs to be investigated whether there exist en-
ergy constraints from which we can design as in
[5] finite-state modulation codes that allow state-
independent decoding to limit error propagation,
and still achieve a reasonable shaping gain. The
constraint we think of, is a sliding constraint on
the energy in a window of a given number of sym-
bols.

If we compare our results with that of Laroia
et al. we come to the conclusion that there is
a considerable overlap. We must remark how-
ever that we started our investigations in 1991.
This resulted in two reports ([9] and [10]), both
in Dutch.
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