
Context Weighting : General Finite Context Sources

Frans M.J. Willems, Yuri M. Shtarkov and Tjalling J. Tjalkens

Eindhoven University of Technology and Institute for Problems of
Information Transmission, Moscow

Abstract

Context weighting procedures are presented for sources with models in four
different classes. Although the procedures are designed for universal data com-
pression, their generality allows application in the area of classification.

1 Introduction

Recently [7] context tree weighting was introduced as a sequential universal source coding
method for the class of binary FSMX sources, as defined by Rissanen [5]. The idea
behind weighting procedures can be summarized as follows.

The well known Elias algorithm (described in e.g. Jelinek [1]) produces for any
coding distribution Pc(x1 · · ·xT) over all binary sequences of length T , a binary prefix
code with codeword lengths L(x1 · · ·xT) that satisfy

L(x1 · · ·xT) ≤ log
1

Pc(x1 · · ·xT)
+ 2 for all x1 · · ·xT . (1)

(We assume that the base of the log(·) is 2. Codeword lengths and information quan-
tities are expressed in bits.) If the marginals Pc(x1 · · ·xt) =

∑
xt+1···xT

Pc(x1 · · ·xT), t =
1, · · · , T are sequentially available the arithmetic code can be implemented sequentially.
Accepting a coding redundancy of at most 2 bits, we are now left with the problem of
finding good coding distributions Pc.

For memoryless sources with unknown parameter θ (the probability of generating
a 1), it is reasonable to assign the block probability Pc(x1 · · ·xT) = Pe(a, b) to a sequence
x1 · · ·xT containing a zeros and b ones where

Pe(a, b)
∆
=

1
2
· 3

2
· . . . · (a− 1

2
) · 1

2
· 3

2
· . . . · (b− 1

2
)

1 · 2 · . . . · (a + b)
for a > 0 and b > 0, etc. (2)

This distribution, which allows sequential updating and therefore sequential coding,
was suggested by Krichevsky and Trofimov [2]. It guarantees uniform convergence
of the parameter redundancy, i.e. for any sequence x1 · · ·xT with actual probability
Pa(x1 · · ·xT) = (1− θ)aθb, it can be shown (see [8]) that

log
Pa(x1 · · ·xT)

Pc(x1 · · ·xT)
≤ 1

2
log T + 1 for all θ ∈ [0, 1]. (3)

In a more general setting the source is not memoryless. The distribution that
the source uses to generate the next symbol Xt, t = 1, · · · , T , is determined by the
binary sequence ut(1) · · ·ut(D), called the context of xt. One can think of sources for
which the context consists of the D most recent source outputs, thus ut(d) = xt−d, d =
1, · · · , D. More general context definitions are possible, it is assumed however that the
context ut(1) · · ·ut(D) is available to the encoder at encoding time and to the decoder
at decoding time of xt.

The mapping M from the context space {0, 1}D into the parameter-index set K, is
what we call the model of the source. To each parameter-index k ∈ K there corresponds
a parameter θ(k) ∈ [0, 1]. The source generates Xt, with a probability of a 1 equal to
θ(M(ut(1) · · ·ut(D))).

If we know the actual model Ma, we can partition the sequence x1 · · ·xT in
memoryless subsequences and use Pc(x1 · · ·xT |Ma) = Πk∈KaPe(ak, bk) as a coding dis-
tribution, where ak, resp. bk is the number of instants t for which xt = 0, resp. 1
and Ma(ut(1) · · ·ut(D)) = k. The image of {0, 1}D under Ma is Ka. Again this coding
distribution allows sequential updating. For any sequence x1 · · ·xT , using (3) and the
convexity of the log(·), the parameter redundancy can now be upper bounded as

log
Pa(x1 · · ·xT)

Pc(x1 · · ·xT |Ma)
≤ |Ka|

2
log

T

|Ka|
+ |Ka| for all Ma ∈M and θ(k) ∈ [0, 1], k ∈ Ka,

(4)
where Pa(x1 · · ·xT) = Πk∈Ka(1− θ(k))akθbk(k) is the actual probability of x1 · · ·xT .

If the model is unknown we weight the coding distributions corresponding to all
models M in the model class M and obtain the coding distribution Pc(x1 · · ·xT) =∑

M∈M P (M)Pc(x1 · · ·xT |M). Here P (M) is the a priori probability that is assigned to
the model M in class M. For any sequence x1 · · ·xT the model redundancy can now be
upper bounded as

log
Pc(x1 · · ·xT |Ma)

Pc(x1 · · ·xT)
≤ log

1

P (Ma)
for all Ma ∈M. (5)

The total cumulative redundancy is equal to the sum of the (cumulative) model,
parameter and coding redundancies. Using (1),(4), and (5) we can upper bound this
total redundancy for any sequence x1 · · ·xT in the following way :

L(x1 · · ·xT)− log
1

Pa(x1 · · ·xT)
=

log
Pc(x1 · · ·xT |Ma)

Pc(x1 · · ·xT)
+ log

Pa(x1 · · ·xT)

Pc(x1 · · ·xT |Ma)
+ L(x1 · · ·xT)− log

1

Pc(x1 · · ·xT)

≤ log
1

P (Ma)
+
|Ka|
2

log
T

|Ka|
+ |Ka|+ 2. (6)

This holds for all models Ma ∈ M and parameters θ(k) ∈ [0, 1], k ∈ Ka. Rewriting
this bound, and taking the minimum over all actual source models and parameters we
obtain

L(x1 · · ·xT) ≤ min
Ma∈M,θ(k)∈[0,1],k∈Ka

{ log
1

Pa(x1 · · ·xT)
+

log
1

P (Ma)
+
|Ka|
2

log
T

|Ka|
+ |Ka|+ 2} . (7)

Assuming that these upper bounds are (more or less) tight we can conclude that
context weighting methods minimize the total description length of a sequence.

In the next sections we consider four model classes. We show that for each of
these classes there exist natural a priori distributions over the models, that allow efficient
(sequential) computation of the corresponding weighted probability Pc(x1 · · ·xT).

2 Splittings

It is natural to view a model as a partition of the set of all contexts {0, 1}D into |K|
cells, one for each parameter θ(k), k ∈ K. Since each partition can be generated by
a sequence of splittings, these are partitions into two cells, a model partitions subsets
of {0, 1}D into smaller subsets, performing binary splittings only. The model class
determines which splittings are allowed, and therefore what the structure of the resulting
context sets is. A splitting which is always possible is the void splitting, corresponding
to the assumption that all contexts in the considered subset are mapped into the same
parameter. Further splitting is unnecessary then. Assuming that all possible splittings
are equally likely, we can define a code that specifies a model. This code is defined
recursively, starting from the complete context set {0, 1}D. For each context subset the
code is the concatenation of the code that specifies the splitting, followed by the two
codes for the (complementary) subsets that have resulted from the splitting, only when
the splitting was non-void however.

Example : Consider the case where D = 3. We assume for the model that
M(000) = M(001) = M(010) = α, M(011) = M(100) = β, M(101) = M(110) = α,
and M(111) = β. If we allow arbitrary splitting (this corresponds to Model Class I as
we will see soon) there are 127 possible splittings of 8 contexts plus the void splitting.
Therefore we need log 128 = 7 bits to specify this first splitting. After this splitting
there are two context sets {000, 001, 010, 101, 110} and {011, 100, 111} we have to deal
with. The code for each of these subsets is the code for the void splitting however.
We need 4 bits for the first subset and 2 bits for the second one. In total 13 bits are
needed to describe the model M if arbitrary splitting is allowed, resulting in |K| = 2
parameter-indices.

In the next section we will see that these splittings lead to efficient weighting
methods.

3 Model Classes

Weighting is assigning probabilities to subsequences corresponding to context subsets.
The subsequence corresponding to a subset S of the set of all contexts {0, 1}D is the
concatenation of all source symbols with contexts in S. The problem now is whether this
subsequence should be considered memoryless or whether the context set S (and also
the subsequence) should be further splitted. For a memoryless subsequence we can use

the estimator Pe(S)
∆
= Pe(aS , bS) where aS , resp. bS is the number of instants t for which

ut(1) · · ·ut(D) ∈ S and xt = 0, resp. 1. If a certain splitting is necessary we should
multiply the estimated (weighted) probabilities for the subsequences corresponding to
the complementary subsets that result from the splitting, Pw(T) and Pw(S − T), with

each other. Since none of the alternatives is more favorite than the others we just
average the estimated probabilities corresponding to all the splittings, including the
void splitting.

3.1 Class I : Arbitrary Splitting

The number of splittings of S including the void splitting is in this case equal to 2|S|−1.
The recursive weighting algorithm for this most general form of splitting is defined by

Pw(S)
∆
=

Pe(S) +
∑
T ⊂S,0D∈T Pw(T)Pw(S − T)

2|S|−1
, (8)

where it is understood that T 6= S. The weighted probability Pw({0, 1}D) can be used as
coding probability. What we mean by this is the following. Suppose data (context and
source symbols) are processed in a structure of records, one for each subset of {0, 1}D,
for 1, · · · , t − 1. Then Pc(x1 · · ·xt−1) = Pw({0, 1}D). Now the context ut(1) · · ·ut(D)
becomes available to encoder and decoder. Updating the structure of records with
xt = 0 would yield the block probability Pc(x1 · · ·xt−10) and updating with xt = 1 gives
Pc(x1 · · ·xt−11). These probabilities can be used for sequential encoding and decoding.
It is easily checked that Pc(x1 · · ·xt−10) + Pc(x1 · · ·xt−11) = Pc(x1 · · ·xt−1).

Inspection shows that the models are weighted with an a priori distribution which
is equal to the sum of the probabilities induced by the lengths of all codes that specify
the model, i.e. the partition of {0, 1}D.

Example : The model redundancy of our model is at most 13 bits. There is
only one sequence of splittings that specifies the model. Therefore

Pw({0, 1}3) ≥ 2−7Pw({000, 001, 010, 101, 110})Pw({011, 100, 111})
≥ 2−72−4Pe({000, 001, 010, 101, 110})2−2Pe({011, 100, 111})
= 2−13Pe({000, 001, 010, 101, 110})Pe({011, 100, 111}). (9)

The number of parameters-indices of our model in class I is |K| = 2. In this class our
model has the lowest possible parameter redundancy.

3.2 Class II : Lexicographical Splitting

Define B(u1 · · ·uD)
∆
=

∑
d=1,D ud2

D−d as the index of the context u1 · · ·uD. This index
determines a lexicographical ordering over the set of contexts, but any other ordering
would do as well. For 0 ≤ i < j ≤ 2D define Si,j as the set of all contexts with an index

between i and j i.e. Si,j
∆
= {s ∈ {0, 1}D|i ≤ B(s) < j}.

The recursive weighting procedure for lexicographical splitting is defined by

Pw(Si,j)
∆
=

Pe(Si,j) +
∑

k=i+1,j−1 Pw(Si,k)Pw(Sk,j)

j − i
. (10)

Probability Pw(S0,2D) = Pw({0, 1}D) can be used for sequential encoding and decoding.
Example : The model redundancy is at now most 8.6 bits. This follows from

the decomposition :

Pw(S0,8) ≥ 1

8
(Pw(S0,3)Pw(S3,8) + Pw(S0,5)Pw(S5,8) + Pw(S0,7)Pw(S7,8))

≥ 1

8
(
1

3
Pe(S0,3)

1

5
(Pw(S3,5)Pw(S5,8) + Pw(S3,7)Pw(S7,8))

+
1

5
Pw(S0,3)Pw(S3,5)

1

3
Pw(S5,7)Pw(S7,8)

+
1

7
(Pw(S0,3)Pw(S3,7) + Pw(S0,5)Pw(S5,7))

1

1
Pe(S7,8))

≥ · · · ≥ 13

5040
Pe(S0,3)Pe(S3,5)Pe(S5,7)Pe(S7,8). (11)

There are five sequences of splittings that specify our model in class II. One of these is
S0,8 ; S0,5S5,8 ; S0,3S3,5S5,7S7,8. The length of the specification code for this splitting
is log 8 + (log 5 + (log 3 + log 2)) + (log 3 + (log 2 + log 1)) = log 1440 = 10.5 bits. The
induced probability 1/1440.

The number of parameters indices of our model in this class is |K| = 4. This
leads to a higher parameter redundancy than for arbitrary splittings.

3.3 Class III : Arbitrary Position Splitting

In this class (and also in class IV) context subsets are splitted according to the value
of a context digit. The position of this context digit can be arbitrary, i.e. in {1, · · · , D}
in class III. A subset is determined by the set P of positions and the sequence of values∏

i∈P vi at these positions, hence SP,
∏

i∈P vi

∆
= {u1 · · ·uD|ui = vi, i ∈ P}.

Recursive weighting for arbitrary position splitting is defined by

Pw(SP,
∏

i∈P vi
)

∆
=

Pe(SP,
∏

i∈P vi
) +

∑
p∈{1,···,D},p6∈P Pw(SP∪{p},(∏

i∈P vi)×0)Pw(SP∪{p},(∏
i∈P vi)×1)

D − |P|+ 1
, (12)

for position sets P 6= {1, · · · , D}. For subsets containing a single context, i.e. subsets
for which all positions are specified, we have Pw(S{1,···,D},v1···vD

) = Pe(S{1,···,D},v1···vD
) =

Pe({v1 · · · vD}) . The weighted probability Pw(Sφ,λ) = Pw({0, 1}D}) can be used for
sequential encoding and decoding. Here φ is the empty set, and λ the empty sequence.

Example : In this class the model redundancy is 8.2 bits :

Pw(Sφ,λ) ≥
1

4
(Pw(S{2},0)Pw(S{2},1) + Pw(S{3},0)Pw(S{3},1))

≥ 1

4
(
1

3
(Pw(S{2,3},00)Pw(S{2,3},01))

1

3
(Pw(S{2,3},10)Pw(S{2,3},11))

+
1

3
(Pw(S{3,2},00)Pw(S{3,2},01))

1

3
(Pw(S{3,2},10)Pw(S{3,2},11)))

=
2

4
(
1

3
(Pw(S{2,3},00)Pw(S{2,3},01))

1

3
(Pw(S{2,3},10)Pw(S{2,3},11)))

≥ 2

4
(
1

3
(
1

2
(Pw(S{2,3,1},000)Pw(S{2,3,1},001))

1

2
Pe(S{2,3},01))

1

3
(
1

2
Pe(S{2,3},10)

1

2
Pe(S{2,3},11)))

≥ 2

4
(
1

3
(
1

2
(Pe(S{2,3,1},000)Pe(S{2,3,1},001))

1

2
Pe(S{2,3},01))

1

3
(
1

2
Pe(S{2,3},10)

1

2
Pe(S{2,3},11)))

=
1

288
Pe({000})Pe({100})Pe({001, 101})Pe({010, 110})Pe({011, 111}). (13)

There are two sequences of splittings that specify our model in class III. One starts with
a splitting at position 2 and then proceeds with a splitting at position 3, the other starts
with a splitting at 3 and then a next one at 2. Both sequences of splittings induce a
probability 1/576, so the total a priori probability of this model in class III is 1/288.
The number of indices in K is 5, which is (again) higher as the number for the previously
described class.

3.4 Class IV : Next Position Splitting

In class IV context subsets are splitted according to the value of the “next” context
digit. Subsets are determined by the sequence of values

∏
i=1,d vi at “previously” splitted

positions, thus S∏
i=1,d

vi

∆
= {u1 · · ·uD|ui = vi, i = 1, · · · , d}.

The recursive weighting procedure for next position splitting is given by

Pw(S∏
i=1,d

vi
)

∆
=

Pe(S∏
i=1,d

vi
) + Pw(S(

∏
i=1,d

vi)×0)Pw(S(
∏

i=1,d
vi)×1)

2
, (14)

for d = 0, 1, · · · , D − 1. For subsets containing a single context only, i.e. subsets for
d = D, we have Pw(Sv1···vD

) = Pe(Sv1···vD
) = Pe({v1 · · · vD}). The weighted probability

Pw(Sλ) = Pw({0, 1}D) can be used for sequential encoding and decoding.
Example : Our model costs 7 bits in class IV. The number of indices in K is 7.

We decompose as follows :

Pw(Sλ) ≥
1

2
(Pw(S0)Pw(S1)) ≥

1

2
(
1

2
(Pw(S00)Pw(S01))

1

2
(Pw(S10)Pw(S11)))

≥ 1

2
(
1

2
(
1

2
Pe(S00)

1

2
(Pw(S010)Pw(S011)))

1

2
(
1

2
(Pw(S100)Pw(S101))

1

2
(Pw(S110)Pw(S111))))

=
1

2
(
1

2
(
1

2
Pe(S00)

1

2
(Pe(S010)Pe(S011)))

1

2
(
1

2
(Pe(S100)Pe(S101))

1

2
(Pe(S110)Pe(S111))))

=
1

128
Pe({000, 001})Pe({010})Pe({011})Pe({100})Pe({101})Pe({110})Pe({111}).

(15)

In class IV there is always only one sequence of splittings that specifies a model.

4 Simulations

In our example we considered a certain model. We have simulated a source that gener-
ates information according to this model for a context definition ut(d) = xt−d, d = 1, 2, 3.
The parameters were chosen θα = 0.8 and θβ = 0.1.

The source produced a sequence of T = 216 binary digits (after having generated
3 digits that were necessary to form the first three contexts). We computed for this

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000 60000 70000

”cliv”
”cliii”
”clii”
”cli”

Figure 1: Cumulative redundancies in bits for t = 1, 2, · · · , 216.

sequence for each of the four procedures defined by (8), (10), (12), and (14), for t =
1, 2, · · · , T the cumulative redundancy log Pa(x1 · · ·xt)/Pc(x1 · · ·xt), which is the total
redundancy under the assumption that there is no coding redundancy. The results are
plotted in the figure.

In the previous section we have seen that the model redundancies for our model
in each of the four classes are upper bound by 13.0, 8.6, 8.2 reps. 7.0 bits. Upper bound
(4) leads to parameter redundancies that can not exceed 17.0, 32.0, 39.2, reps. 53.2
bits for our model in the four different classes. The total redundancies are therefore
upper bounded by 30.0, 40.6, 47.4, resp. 60.2 bits. The figure shows that the computed
redundancies are close to these bounds.

5 Remarks

In the previous section we have described four model classes together with their weight-
ing algorithms. All these methods achieve Rissanen’s asymptotic lower bound on the
redundancy [4]. It can also be shown that when some other code gives lower redun-
dancies than our code for certain sources, it must yield higher redundancies for other
sources in the class (see [8]).

Although we have only considered binary sources and binary contexts here, it is
straightforward to generalize to non-binary cases. In our presentation of the weighting
algorithms we assume infinite precision arithmetic. Modifications exist however, that
can be implemented on fixed register length machines.

As a final remark we mention the application of weighting to classification based
on Rissanen’s minimum description length principle (see [6] and also Quinlan and Rivest
[3]). Considering the attributes, or tests, of an object t as its context ut(1) · · ·ut(D) and
the class of the object as source output xt, classification can be regarded as a source

coding problem.
The flexibility of weighting, allows us to describe efficient methods for producing

minimum description length classification trees. Observe that when we take the maxi-
mum weighted probability over the splittings of a context subset, instead of adding them
together, and divide by the total number of splittings, we obtain the minimum descrip-
tion length of the data as in (7). Tracking this procedure yields the minimum description
length model. Combinations of our weighting methods for the different classes, lead to
interesting classification procedures, even for attributes that take values in “large” al-
phabets. Note that the algorithm for class III selects the positions (attributes) which
gives the highest reduction of the description length, while class II methods can be used
to find the most effective thresholds in large attribute alphabets. The fact that there
exist elegant weighting methods to treat missing attributes, demonstrates once more
the flexibility of weighting.

References

[1] F. Jelinek, Probabilistic Information Theory, New York: McGraw-Hill, 1968, pp.
476-489.

[2] R.E. Krichevsky and V.K. Trofimov, “The Performance of Universal Encoding,”
IEEE Trans. Inform. Theory, vol. IT-27, pp. 199-207, March 1981.

[3] J.R. Quinlan and R.L. Rivest, “Inferring Decision Trees Using the Minimum De-
scription Length Principle,” Inform. and Comput., vol. 80, pp. 227-248, 1989.

[4] J. Rissanen, “Universal Coding, Information, Prediction, and Estimation,” IEEE
Trans. Inform. Theory, vol. IT-30, pp. 629-636, July 1984.

[5] J. Rissanen, “Complexity of Strings in the Class of Markov Sources,” IEEE Trans.
Inform. Theory, vol. IT-32, pp. 526-532, July 1986.

[6] J. Rissanen, Stochastic Complexity in Statistical Inquiry. Singapore : World Scien-
tific Publ. Co., 1989.

[7] F.M.J. Willems, Y.M. Shtarkov and Tj.J. Tjalkens, “Context Tree Weighting :
A Sequential Universal Source Coding Procedure for FSMX Sources,” IEEE Int.
Symp. on Inform. Theory, San Antonio, Texas, Jan. 17-22, 1993, p. 59.

[8] F.M.J. Willems, Y.M. Shtarkov and Tj.J. Tjalkens, “Context Tree Weighting : Re-
dundancy Bounds and Optimality,” submitted for presentation at the 6th Swedish-
Russian Workshop on Information Theory, Mölle, Sweden, Aug. 22-27, 1993.

