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Abstract— In future domestic context aware applications
the location of mobile devices is often required. Ultrasound
technology enables high resolution indoor position measure-
ments. A disadvantage of state-of-the-art ultrasonic systems
is that several base stations are required to estimate 3D posi-
tion. Since fewer base stations would lead to lower cost and
easier setup, a novel method is presented that requires just
one base station. The method uses information from acous-
tic reflections in a room, and estimates 3D positions using an
acoustic room-model. The method has been implemented,
and verified within an empty room. It can be concluded that
ultrasonic reflection data provides useful clues about the 3D
position of a device.

Keywords— Location awareness, ultrasonic location sys-
tems, signal processing

I. INTRODUCTION

In future computing systems and devices, context aware-
ness will play an increasingly important role. A device or
system that is context aware [4] makes use of information,
that characterizes the context or physical situation that the
device or its user is currently in. Often, the physical lo-
cation of mobile devices is important context information.
In such cases the term location aware systems can be used.
For example, a user carrying a context-aware museum au-
dio guide could be informed automatically about the ex-
hibits at the current location.

Within the PHENOM project [14], several application
scenarios were developed that bring location awareness
into the area of domestic consumer electronics. The goal
of location awareness in these applications can be func-
tional, e.g. to improve the ease-of-use of consumer de-
vices. But it may also enable new applications and ex-
periences that are attractive to users. An example is the
PHENOM portable screen for photo-browsing, that detects
nearby displays, using them to display content.

Location-aware applications may need either absolute
or relative location information. Some of our application

scenarios require the absolute 3D position of devices within
a room. The required position accuracy (typically ≤ 1
m) can not be delivered by wide-area systems like GPS.
Therefore, a specialized indoor location system is required.
Such systems exist [8] for several context-aware applica-
tions. These systems may use radio waves (RF), magnetic
fields, ultrasonic waves, or combinations thereof. We fo-
cus on ultrasonic location systems, because of their proven
track record in low cost accurate indoor position estima-
tion.

Existing state-of-the-art ultrasonic location systems cal-
culate a set of distances, using ultrasound time-of-flight
measurements between fixed base stations (BSs) and a mo-
bile device (MD). They subsequently use trilateration al-
gorithms [8, 11] to calculate a 2D or 3D position of the
MD. Existing systems are e.g. the Bat [1], Constellation
and others from InterSense [7], Cricket [12], and the sys-
tem by Randell and Muller [13]. A disadvantage of all
these systems is that several units of infrastructure are re-
quired at fixed known positions in a room, e.g. attached
to the ceiling. Generally four BSs are required in a non-
collinear setup to estimate 3D position of MDs. In special
cases like ceiling-mounted BSs, three is sufficient.

The required infrastructure and installation effort make
these systems unsuitable for domestic deployment. Impor-
tant requirements in the domestic domain are that a loca-
tion system should be robust, safe, easy to install, minimal
in its infrastructure, and low cost. These requirements led
to our current research direction of a single base station
positioning system. A single BS unit is the minimum of
infrastructure (apart from no infrastructure at all), is easier
to install than multiple units, and lowers system cost if BS
units are mass-produced. Two methods were developed to
realise such a single-BS system. The first method, pre-
sented in this paper, uses ultrasonic reflections in a room
for estimation of 3D positions of devices. The second
method [6] employs an acoustic array within the BS, that



Image Source 1


Image Source 2

Source


Receiver


Fig. 1. Schematic 2D top view of a room, containing one acous-
tic source and one receiver. Two acoustic reflections (arrows)
and associated image sources (crosses) are shown.

estimates both distance and direction of a MD, yielding a
3D position estimate.

II. ACOUSTICAL REFLECTIONS IN A ROOM

In ultrasonic location systems, one or more transmitter
units emit ultrasonic waves. For clarity it is assumed in
this section that the fixed base stations (BSs) are transmit-
ting, and mobile devices (MDs) are receiving. Transmitted
ultrasonic waves propagate inside the room and cause re-
flections from surfaces such as walls, floor and ceiling. To
clarify this, Fig. 1 shows a 2D top view of a room, with
one acoustic source BS and one receiver. The source emits
a direct sound wave towards the receiver along the line-of-
sight (LOS) path, but sound also reflects off the four walls
and arrives at the receiver indirectly. Two such indirect
acoustic rays are shown in the figure. These reflections can
be modeled as emissions from so-called image sources lo-
cated outside the physical room boundaries. Image source
positions are constructed by a mirror-symmetry operation
with respect to a room boundary. Two image sources, as-
sociated to the two example reflections, are shown in the
figure.

Many more image sources exist, like ceiling/floor re-
flections and higher-order reflections (e.g. wall–ceiling–
wall). The combined effect of reflections can be observed
in Fig. 2, which shows a processed acoustic measurement.
The many peaks in this graph are caused by reflections, ar-
riving at the receiver at different moments in time. Such
a pattern of peaks was observed to be dependent on the
3D receiver position and orientation, given a fixed source
position. These patterns were named signatures because
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Fig. 2. Measured signature at position xR = (2.60, 1.70, 1.27).
The horizontal axes show time (top) and the corresponding dis-
tance interval of [0, 10] m. (Signatures are obtained by the pro-
cedure in Section V-B.)

they contain information about receiver position and ori-
entation. The first peak in the signature corresponds to
the line-of-sight distance between source and receiver. But
from this one distance we do not know yet the receiver po-
sition. We would need more BSs for that. However, we
expect that image sources can be used as if they are ‘vir-
tual base stations’ (VBS). The combined information from
BS and VBSs might enable estimation of the 3D receiver
position. But the problem with VBSs is that we can neither
identify nor distinguish them. For example, for the peaks
in Fig. 2 it is not known by which VBS they were ‘trans-
mitted’. As a result, standard trilateration algorithms can
not be applied, and it is very difficult to directly calculate
a 3D position from a measured signature. However, the re-
verse is easier: computing an expected signature, given a
3D position. This fact is exploited by the signature match-
ing method presented in Section IV.

III. ACOUSTICAL MODEL

To compute an expected acoustic signature for a certain
position in a room, a model is needed that describes the
electrical and acoustical properties of the positioning sys-
tem (including transmitter and receiver) and the acoustics
of the room. Such a model is summarized in this section,
more details can be found in [5].

A. Transmitter and receiver model

In our implementation, piezo-electric ultrasound trans-
ducers were used. Piezo transducers can be modeled by



a linear impulse response [3]. In the model the combined
transmitter and receiver impulse response hTR(t) is used.
It was obtained by measurement, although physical mod-
eling [3] is also possible.

Most ultrasonic transmitters are directional, designed to
emit acoustic energy mainly within a narrow beam from
the front. Likewise, receivers are most sensitive at the
front. This direction-dependent attenuation for both trans-
ducers is captured in the transducers model by the nor-
malised beampattern function DN (θ) of a circular piston
[15], where θ is the angle with respect to the transducer
axis. (The piston model was slightly modified to account
for the effect of the piezo transducer’s casing.)

B. Box-shaped room model

Rooms exist in many shapes, but domestic and office
rooms are often approximately box-shaped. Therefore we
used a box-shaped room model, which has six boundary
surfaces (four walls, ceiling, and floor). The goal of the
room model is to predict the impulse response of a room
hr(t,p) as a function of relevant parameters. These param-
eters, in vector p, include the room dimensions (assumed
to be known), transmitter/receiver positions and orienta-
tions, surface reflection coefficients, and room tempera-
ture and humidity. In practice, a room response is a func-
tion of other parameters as well, such as people/objects/-
furniture in the room. However, a ‘minimal’ room model
of an empty room can be constructed that only includes
the six boundary surfaces and ignores the room’s contents.
This is a standard approach in room acoustics. To model
a room the image method was applied, because for box-
shaped rooms an impulse response for short durations can
be calculated efficiently using the image model of Allen
and Berkley [2]. Refer to Section II for the image sources
concept or to [2, 10] for details.

The image method is based on the ray acoustics [10]
approximation of acoustic waves. For ray acoustics mod-
els of arbitrarily shaped rooms, the room impulse response
hr in a time interval [0, te] can be written as a sum of N
independent rays arriving at the receiver:

hr(t,p) =

N∑

i=1

ai · δ(t− di/c) (1)

where di is the distance the i-th ray travels, of which ray
d1 is the line-of-sight ray the others are reflections, ai is
the amplitude of the i-th ray arriving at the receiver, c is
the speed of sound and δ the Dirac delta function. Note
that values di, ai and c are functions of parameter vector
p. For a box-shaped room all di can be calculated accord-
ing to [2], for known room dimensions. The amplitudes

ai can be described in terms of acoustic pressure, taking
into account the attenuation over distance [3, 9], attenua-
tion due to reflections, and the attenuation caused by the
orientations of both transducers as modeled by the beam-
pattern function (Section III-A).

The attenuation due to boundary surface reflections va-
ries, depending on the reflection coefficient Γ of building
materials. From measurements we observed that for typi-
cal building materials there is little reflection loss (Γ ≈ 1)
at ultrasonic frequencies around 40 kHz. However, for soft
materials such as curtains or carpet (e.g. Γ ≈ 0.3), the loss
can be substantial. A default of Γ = 1 was used in the
model.

C. Simulation of the model

The combined room/transducers model has one input
signal u, which is the electrical signal applied to the trans-
mitter, and one output ye, the expected signal at the re-
ceiver. The output ye is given by convolving the room
model, transducers model and u:

ye(t,p) = hr(t,p) ∗ hTR(t) ∗ u(t) (2)

IV. SIGNATURE MATCHING METHOD

In this section the signature matching method will be
presented. It estimates the 3D position of a mobile device
(MD) in a room, based on an acoustic measurement per-
formed by the MD. One fixed base station (BS) is needed
within the room. Because it is very difficult to directly es-
timate a 3D position directly from the signature (as noted
in Section II), the method uses the reverse approach. It
simply tries a set C of candidate 3D positions in the room,
calculates an expected signature at these positions using
the acoustic model of Section III, and compares those to
the measured signature. Finally the best-matching candi-
date position is picked as the likely MD position.

A. Line-of-sight distance measurement

Measurement of the line-of-sight (LOS) distance between
BS and MD gives initial information about the MD posi-
tion. To obtain this LOS measurement, we assume that
transmitter and receiver have mutual time synchronisation
by an RF link similar to existing systems [1, 12, 13]. The
LOS distance can then be obtained by a first-peak detec-
tion on the measured signature.

Figure 3 shows a front view of a room. For now, we
assume that the fixed transmitter Tx near the ceiling acts
as a BS and that the mobile device Rx is a receiver. The
LOS distance is visualised as a line between them. The
partial sphere surface S represents all possible positions of
Rx, if nothing but the LOS distance and the coordinates of



Fig. 3. 3D view of a room with transmitter Tx and receiver Rx.

Tx in the room are known. Using this knowledge, a set
C can be constructed that contains Nc candidate positions,
distributed evenly over surface S.

Note that measurement of the LOS distance could fail
due to blocking of the line-of-sight path. In this paper it is
assumed that LOS measurements always succeed. During
test measurements, this was also assured by measuring in
an empty room. The failure case is discussed in [6] in the
context of another single-BS positioning method.

B. Signature matching algorithm

The signature matching algorithm takes a measured sig-
nature vector s as input and produces a position estimate x̂

of the MD.
Certain parameters must be known before the algorithm

can be executed: the first group of parameters are the con-
figuration parameters p (Section III-B), describing the phys-
ical circumstances within the room. The room size (part of
p) can be obtained by manual input, or estimated through
echo measurements by the fixed BS. Furthermore the 3D
position and orientation of the BS should be known. Fi-
nally we need the orientation vector vR of the transducer
mounted on the mobile device. vR should be seen as
the ‘pointing direction’ of the transducer. Three options
were identified to obtain vR: first, the orientation could
be ‘fixed by design’. An example is a remote control unit
that is mostly lying horizontally on a table surface or held
in hand, with the transducer approximately pointing up.
A second option is to estimate orientation, making use of
characteristics of the measured signature. Methods to do
so are in development. A third option is to use gravita-
tional and/or inertial orientation sensors within a MD to
estimate (part of) the orientation.

The second group of parameters are the algorithm pa-
rameters. These include e.g. the size of the set C of candi-

date positions, and the choice of a metric to use for match-
ing.

The signature matching algorithm [5] proceeds as fol-
lows: for a measured signature s, first the LOS distance is
determined, and second the set C of candidate positions is
created on surface S, as shown in the above section. Third,
for all candidate positions in C an expected signature se

is calculated using the acoustic model. Fourth, all signa-
tures in C are matched to s, and the best matching candi-
date j with position xj is picked as the likely MD position,
x̂ = xj .

C. Comparison metrics

A comparison metric is a method of matching two sig-
natures. It is defined as a function m = f(x,y) of two
signature vectors x and y to compare, with a scalar out-
come m. The maximum value of m, over all x and y to
compare, is associated with a ‘best match’ of two signa-
tures. So the higher m, the more x looks like y.

Many comparison metrics are possible, for example mean
absolute error, mean squared error, or pattern matching ap-
proaches. The first metrics tried were based simply on
mean absolute difference between the signatures, which
can be calculated quickly. These metrics are described by:

Mq(x,y) = −
1

N

N∑

k=1

|x(k)− y(k)|q (3)

where q is a parameter to be chosen. The best match occurs
when x = y, yielding maximum match value Mq = 0.
Note M1 is the mean absolute error metric and M2 the
mean squared error metric. Other comparison metrics are
currently in development, for example a cross-spectrum
based metric.

D. Discussion

The method and algorithm as presented, should be seen
as an initial result. The computational load of the method
is currently high (see Section V-D) and has to be improved.
Another drawback is the need to know the orientation of
the receiver vR. Furthermore, the sensitivity of the posi-
tion estimates to changes in the algorithm’s many parame-
ters is still to be investigated.

V. IMPLEMENTATION

The signature matching method has been implemented
as a measurement setup, built with two goals in mind. The
first was to validate the room model against a real (empty)
room. The second was to prototype an ultrasonic single-
BS positioning system that uses the signature matching
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method, and test its performance. In this section the mea-
surement setup and signal processing steps are described.

A. Measurement setup

A choice that had to be made is whether the BS is a
transmitter or a receiver. It was chosen to be a transmit-
ter, which allows unlimited mobile receivers without risk
of acoustic interference. The BS was implemented as an
ultrasonic transmitter attached to a pole. The pole can be
placed within a test room at a fixed position. One mobile
device (MD) was implemented as a receiver attached to a
pole. It can be moved around to measure at various posi-
tions and orientations in 3D space.

The measurement setup diagram is shown in Fig. 4. One
transmitter for the BS and one receiver for the MD are
connected to a measurement PC. The output DAC drives a
Quantelec SQ-40T 40 kHz ultrasound transmitter with si-
nusoidal bursts within±3 V. The acoustic waves propagate
inside the room, and are recorded by a Quantelec SQ-40R
receiver. The received electrical signal is amplified, and
filtered by a 30-100 kHz bandpass filter to remove electri-
cal noise. The ADC samples the data y(k) and sends it to
the PC running MATLAB. Time synchronization between
BS and MD is simulated by a shared time trigger between
the ADC and DAC.

B. Signal processing

The measured signal y is not used directly as input to
the position estimation algorithm. A number of operations
are performed to generate a signature, which is the input
to the algorithm. The signature contains all relevant in-
formation of the measurement in a compact form. Fig-
ure 5 shows the operations performed in MATLAB to ob-
tain a signature. The first step is a cross-correlation filter,
that performs matched filtering to remove noise and also
produces correlation output peaks signifying the times-of-
arrival of acoustic wavefronts at the receiver. The tem-
plate t(k) is the signal as expected to arrive from a single
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Fig. 5. Signal processing operations to obtain a signature.

acoustic ray, obtained using the transducers model (Sec-
tion III-A). The second operation demodulates an ampli-
tude envelope from the ultrasonic signal’s fc = 40 kHz
carrier frequency. Since the bandwidth of the envelope is
less than 10 kHz, it is downsampled in the third step by a
factor 10 to sampling frequency fs = 25 kHz. The fourth
step is attenuation compensation, which compensates the
typical signal amplitude attenuation of ultrasound over dis-
tance. Without this step, a signature’s appearance would be
dominated by the first few early-arriving reflections, which
are higher in amplitude than late-arriving ones. The com-
pensation step allows for a fair comparison between two
signatures when using amplitude-based metrics as in Eq.
3.

The result is a signature s(k′) which has a typical peak
and valley pattern, where each peak signifies the arrival of
one or more acoustic rays at the receiver at that moment in
time. It can also be written as a signature vector s. For an
example signature see Fig. 2.

C. Signature calculation

A straightforward calculation of an expected signature
se involves simulating the acoustic model using Eq. 2, and
processing result vector ye according to the steps above.
But to reduce the calculation time of convolutions in MAT-
LAB, an optimization was performed based on a Fourier
transformation of Eq. 2 to the frequency domain:

Y (f) = Hr(f,p) ·HTR(f) · U(f) . (4)

Define se as the signature calculated from ye, and S as
its Fourier transform. Then the cross-correlation of ye with
template t (having spectrum T ) and demodulation (from
carrier frequency fc) are equivalent to:

S(f) = T (fc − f) · Y (f − fc)

= Hr(f − fc,p) · U ′(f − fc) , (5)



where Eq. 4 was substitued for Y and the newly defined

U ′(f) = T (−f) ·HTR(f) · U(f) (6)

is indepedent of parameters p so it only has to be calcu-
lated once.

The signature calculation then proceeds as follows: first,
Hr is calculated by applying a FFT to hr. After the vector
multiplication of Eq. 5, the ‘uncompensated’ signature se

is obtained by applying an IFFT to S. Finally, the attenu-
ation compensation step is applied to se by another vector
multiplication.

D. Algorithm computational load

The signature matching algorithm was implemented us-
ing the M1 comparison metric. The computational bottle-
neck of the algorithm in this case is the simulation of sig-
nature vectors se for each of the Nc candidate positions in
set C , using Eq. 5. One simulation involves a N-point FFT,
vector multiplication, and IFFT operation, where N=4096
currently. The full computational load is approximately
O(Nc·10

5) FLOPS for a set C of size Nc, where Nc ranged
from 7243 to 11131 in our experiments, depending on the
varying surface area of sphere S. This implies a calcula-
tion time of 1-10 s for an optimized implementation on a
Pentium 4 PC. The calculation time could be significantly
reduced by a smarter choice of C , e.g. using optimization
algorithms or pruning of the search space.

VI. EXPERIMENTAL

Initial experiments were performed in an empty office
room. An empty room was chosen to verify the acoustic
room model. Also, an empty room represents the best-case
condition for any location system. Experiments in a room
with obstacles are planned.

A. Experimental procedure

The test room size is 3.73 by 7.70 m and 2.97 m high.
Some irregularities are present in the form of windows,
window-ledges, a door, radiator, a tap and sink, and ceiling-
embedded lighting units. A coordinate system was defined
as shown in Fig. 3. The BS position (0.95, 0.04, 2.95) near
the ceiling was used, to mimic the typical ceiling place-
ment for indoor location systems. The receiver was placed
at several positions in the room as shown in the next sec-
tion. The height of the receiver was set at 1.3 meter, to
mimic a typical height for a mobile device that is carried
around in a user’s hand. The orientation of the receiver
was always set parallel to the negative y axis, i.e. vR =
(0,−1, 0), ensuring a good LOS path between transmitter
and receiver.
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Fig. 6. Top view of the test room, showing 20 measurement
locations (encircled). The position estimates per position are
shown by the tips of the solid lines.

B. Results

The signature matching algorithm was executed for 20
measurements in total at various positions in the test room.
These positions are shown as circles in Fig. 6 in an XY
top view of the room. In the same figure, the estimated
positions are marked by lines pointing from the encircled
true positions towards the estimated positions. It can be
seen that accuracy is usually better than 20 cm, except for
positions 2 and 11. They have a larger position error, but
still within the limit of≤ 1 m. These errors were caused by
a combination of three effects in the measured signature:
‘missing’ peaks, unexpected spurious peaks, and random
deviation of peak-amplitudes from their predicted values.

C. Discussion

It can be expected that the above error effects become
more frequent, if more objects and obstructions are present
in the room. The more objects clutter a room, the less valid
the model of an empty room will become, which could de-
grade positioning accuracy. Tests are needed for the real-
istic case of a cluttered room. Likely, the method itself has
to be improved to cope with these situations.

VII. CONCLUSIONS

Based on the experimental work it can be concluded that
measured ultrasonic signals contain more information than
just the transmitter-receiver line-of-sight distance. In ex-
isting ultrasonic location systems, only the latter is used.



The extra information is contained in a measured pattern,
the signature. The signature consists of amplitude peaks,
that are caused by acoustic reflections within a room.

We propose to use the information contained in the sig-
nature to perform 3D device position estimation, using just
a single base station per room. A method called signature
matching was designed and implemented for this purpose.
It was shown by initial experiments that the signature in an
empty room can be predicted by an acoustic model with
sufficient accuracy to use it for 3D position estimation.

The method described in this paper is not yet mature.
Future work is aimed at applying the method in realis-
tic non-empty rooms. This requires improvements to the
method as mentioned in Section VI-C. A first improve-
ment is to implement a tracking system, that integrates
a set of position estimates over time for improved accu-
racy and robustness. Second, the use of acoustic reflec-
tions could be combined with the single-BS array position
estimation method in [6]. Such an array allows a base sta-
tion to get more information about the direction of mo-
bile devices, thus enabling more robust position estimates.
Third, the computational load of the method has to be im-
proved, as the current ‘brute force’ approach takes too long
for real-time position estimates.

ACKNOWLEDGMENTS

The authors would like to thank S. Egner for signal pro-
cessing support, and the other members of the PHENOM

project team: Y. Burgers, E. van den Hoven, N. de Jong,
Y. Qian, D. Teixeira and E. Tuulari.

REFERENCES

[1] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles,
A. Ward, and A. Hopper. Implementing a Sentient Computing
System. IEEE Computer, 34(8):50–56, 2001.

[2] J. Allen and D. Berkley. Image Method for Efficiently Simulat-
ing Small-Room Acoustics. J. Acoust. Soc. Am., 65(4):943–951,
1979.

[3] M. Crocker. Handbook of Acoustics. J. Wiley & Sons, 1998.
[4] A. K. Dey. Understanding and Using Context. Personal and Ubiq-

uitous Computing Journal, 5(1):4–7, 2001.
[5] E. O. Dijk, C. van Berkel, R. Aarts, and E. van Loenen. Ultrasonic

3D Position Estimation using a Single Base Station. In Proc. Eu-
ropean Symposium on Ambient Intelligence (EUSAI), Veldhoven,
The Netherlands, 2003. Springer Verlag.

[6] E. O. Dijk, C. van Berkel, R. Aarts, and E. van Loenen. A 3-D
Positioning Method using a Single Compact Base Station. To be
published, 2004.

[7] E. Foxlin, M. Harrington, and G. Pfeifer. Constellation: A Wide-
Range Wireless Motion-Tracking System for Augmented Reality
and Virtual Set Applications. In Proc. ACM SIGGRAPH 98, pages
371–378, Orlando, Florida, USA, 1998.

[8] J. Hightower and G. Borriello. Location Systems for Ubiquitous
Computing. IEEE Computer, 2001(August):57–66, 2001.

[9] ISO. Standard 9613-1: Acoustics - Attenuation of sound during
propagation outdoors (part 1), 1993. www.iso.ch.

[10] H. Kuttruff. Room Acoustics. Elsevier, 3rd edition, 1991.
[11] D. E. Manolakis. Efficient Solution and Performance Analy-

sis of 3-D Position Estimation by Trilateration. IEEE Trans. on
Aerospace and Electronic Systems, 32(4):1239–1248, 1996.

[12] N. Priyantha, A. Miu, H. Balakrishnan, and S. Teller. The Cricket
Compass for Context-Aware Mobile Applications. In Proc. ACM
7th Int. Conf. on Mobile Computing and Networking (MOBI-
COM), pages 1–14, Rome, Italy, 2001.

[13] C. Randell and H. Muller. Low Cost Indoor Positioning System.
In Proc. Int. Conf. on Ubiquitous Computing (UbiComp), pages
42–48, Atlanta, Georgia, USA, 2001.

[14] E. van Loenen, N. de Jong, E. Dijk, E. van den Hoven, Y. Qian,
and D. Teixeira. Phenom, Chapter 8.6. In E. Aarts and
S. Marzano, editors, The New Everyday, Views on Ambient Intelli-
gence, pages 302–303. 010 Publishers, 2003. http://www.project-
phenom.info.

[15] L. Ziomek. Fundamentals of Acoustic Field Theory and Space-
Time Signal Processing. CRC press, 1995.


