Correlation of relative and global sensor motion with motion artifacts in photoplethysmograms

Ralph Wijshoff, Massimo Mischi, Alexander van der Lee, Pierre Woelee, Paul Aelen, Niek Lambert, Ronald Aarts

contact: R.W.C.G.R.Wijshoff@tue.nl

Introduction

The use of pulse oximeters (Fig. 1) is spreading in low acuity ambulatory settings, such as telemetric solutions in general wards, or home monitoring of patients with chronic lung disease. In these settings pulse oximetry is heavily affected by motion artifacts, because PPGs are highly susceptible to motion. The goal of this research is improving the robustness to motion of PPG measurements, enabling reliable ambulatory oximetry.

Measurement setup

- A laser diode and an accelerometer measure relative and global sensor motion respectively (Fig. 2).
- The forehead sensor has been attached by adhesives and a headband.
- A lead I ECG measurement provides a heart rate (HR) reference.
- A commercial pulse oximeter provides an oxygen saturation (SpO₂) reference.
- One subject walked on a treadmill at different speeds to generate motion artifacts.

Results

- While walking at constant speed, a beat phenomenon at $f_{\text{beat}} = |f_{\text{HR}} - f_{\text{pace}}|$ Hz is observed in forehead PPGs, affecting both HR and SpO₂ accuracy.
- The beating phenomenon suggests an additive motion artifact.
- During walking the relative sensor motion correlates best with the vertical accelerometer axis.
- Both measures of motion may perform comparably as artifact reference to suppress the beating effect and improve HR and SpO₂ accuracy.

<table>
<thead>
<tr>
<th>Speed (km/h)</th>
<th>HR error: mean ± std (BPM)</th>
<th>SpO₂ error: mean ± std [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rest</td>
<td>Motion</td>
</tr>
<tr>
<td>4</td>
<td>0.0576 ± 1.19</td>
<td>0.0958 ± 2.05</td>
</tr>
<tr>
<td>5</td>
<td>0.0414 ± 1.11</td>
<td>0.139 ± 2.92</td>
</tr>
<tr>
<td>6</td>
<td>0.0134 ± 1.10</td>
<td>0.361 ± 5.64</td>
</tr>
<tr>
<td>7</td>
<td>0.019 ± 1.16</td>
<td>0.328 ± 5.38</td>
</tr>
</tbody>
</table>

Table 1: HR and SpO₂ error versus speed of walking.

Conclusions

- A laser diode and an accelerometer measure relative and global sensor motion respectively (Fig. 2).
- The forehead sensor has been attached by adhesives and a headband.
- A lead I ECG measurement provides a heart rate (HR) reference.
- A commercial pulse oximeter provides an oxygen saturation (SpO₂) reference.
- One subject walked on a treadmill at different speeds to generate motion artifacts.

Figure 1: Pulse oximetry finger clip used to measure a patient’s heart rate and blood oxygenation.

Figure 2: Customized forehead sensor to measure relative and global sensor motion.

Figure 3: Relative sensor motion is measured via self-mixing interferometry. The phase of the Doppler vector gives the relative motion.

Figure 4: The effect of walking on PPGs and the derived HR and SpO₂.

Figure 5: Relative and global sensor motion during walking.

IEEE EMBS Benelux Symposium, Brussels, Belgium, 2 December 2011

Copyright © 2011 IEEE. All rights reserved.