A MODIFIED CUSUM ALGORITHM FOR DETECTION OF TACHYCARDIA IN PATIENTS WITH EPILEPTIC SEIZURES

Constantin Ungureanu1,3, PhD, Martien van Bussel2,3, MSc MBA, Francis Tan1,3, MD, Prof. Ronald Aarts1, PhD, Prof. Johan Arends1,2,3, PhD

1Eindhoven University of Technology, Signal Processing Systems Group, Eindhoven, the Netherlands
2Kempenhaeghe, Heeze, the Netherlands, 3HOBO Heeze B.V., Heeze, the Netherlands

GOAL To develop and validate a simple, self-learning algorithm for the detection of major nocturnal seizures using heart rate data

EPILEPSY AND HEART RATE (HR)
• Epilepsy is a disorder manifested by recurrent seizures
• ~50 million people are affected in the world
• 30% refractory -> seizures despite best possible treatment
• Sometimes, seizures can lead to brain damage or even death (early warning is needed)
• Often, seizures alter autonomic functions such as heart rate (tachycardia)
• Heart rate increase before, and/or in the same time with any clinical symptoms (such as movement)

EXAMPLES OF HR INCREASE DURING SEIZURES

Classical CUSUM algorithm
Accumulation of deviations above/below target mean (µ0)

\[CS^+(i) = \max[0, x(i) - (µ_0 + K)] + CS^+(i-1) \]
\[CS^-(i) = \min[0, x(i) - (µ_0 + K)] + CS^-(i-1) \]

\[K = |µ_1 - µ_0|/2 \]

µ0 = reference value; µ1 = out of control mean

Adaptive CUSUM algorithm

\[CS^+(i) = \max[0, x(i) - (µ_0 + K)] + CS^+(i-1) \]
\[µ_0 = \text{mean}(hr(1:i)); µ_1 = 110; \]
\[CS^-(1) = 0; hr(1) = 80 \text{ BPM (Beats Per Minute)}; \]

hr(i) = instantaneous value; hr(1:i) = baseline;

Algorithm is iterative, self learning, no additional parameters required

DATA PROCESSING
ECG recorded in patients with epilepsy
100 Hz sampling rate, V2-V6 configuration

Offline RR interval detection
Convert to HR (BMP)
Remove outliers
Apply CUSUM algorithm

RESULTS

Patient 1
Patient 2

CONCLUSIONS
• Heart rate pattern during seizure is very complex, after a seizure, the HR can return to baseline, stay at high arousal level or retain wakefulness state
• The proposed algorithm detects all seizures that show heart rate increase above 110 BPM.
• Algorithm performance is robust against motion artefacts
• Arousal or short awakenings are the main source of false positives.

FUTURE WORK
• Improve the CUSUM algorithm to reduce the false positives (fusion with accelerometer data)
• Embed the algorithm for real-time use

With support of: ZonMW Partners: Kempenhaeghe Hobo

Contact UngureanuC@kempenhaeghe.nl