absence of obstruction or arousal, some dial-downs were preceded by hypercapnic and/or hypoxic breathing for 30 seconds, inducing a range of ventilatory stimulation during which breath-by-breath VE and αHR were determined. The HR response to ventilatory stimulation (αHR/VE) was calculated from these observations. In each patient the increase in HR in the first two post-event breaths was compared to the increase expected from the αHR/VE at the observed post-event VE levels.

Results: αHR/VE ranged 0 to 0.91 beats·L⁻¹·m⁻¹ in different subjects (0.43 ± 0.28). The post-event changes in HR, relative to pre-dial-down HR, ranged −2.7 to 5.8 beats·min⁻¹ in B1 (1.2 ± 2.2; p < 0.02) and −1.7 to 6.9 beats·min⁻¹ in B2 (2.3 ± 2.4; p < 0.001). The difference between observed and expected αHR was −0.06 ± 2.02 min⁻¹ for B1 and 0.55 ± 2.00 min⁻¹ for B2. Neither value was significant.

Conclusion: Post-event tachycardia in OSA in the absence of cortical arousal can be entirely explained by the post-event increase in ventilation.

Support (If Any): Supported by Canadian Institutes of Health Research.

0173

WHAT CAUSES THE DIFFERENCES IN CARDIAC ACTIVITY WITHIN AND BETWEEN SUBJECTS DURING SLEEP?

Long X¹,², Haakma R², Fonseca P¹,², Aarts RM¹,², Goelena MS¹,², Rolink J¹

¹Eindhoven University of Technology, Eindhoven, Netherlands, ²Philips Group Innovation - Research, Eindhoven, Netherlands, ³RWTH Aachen University, Aachen, Germany

Introduction: It is known that cardiac activity varies across sleep stages. However, it has not been quantitatively investigated in what aspects the cardiac activity is influenced by within-/between-subject differences. The differences can be caused by many factors such as subject demographics, time and (cardiac) physiology. We hypothesize that these factors affect the cardiac activity during sleep. Therefore, we try to quantify these effects leading to cardiac variations within and between subjects, which can be potentially used to help separate sleep stages.

Methods: We considered overnight heartbeats, obtained from electrocardiographic signals, from 165 healthy adults (age 51.8 ± 19.4 years). Sleep stages were scored on 30-s epochs with polysomnography according to R&K rules. To investigate the abovementioned effects on cardiac activity, we applied multilevel models that consider structural variables at hierarchical levels. Two cardiac parameters were analyzed: mean heart rate (HR) and standard deviation of heartbeat intervals (SDNN). The models (with two levels: subject and time) included variables regarding effects from sleep stages (wake, REM, light and deep sleep), demographics (age, gender and body mass index), time of night and physiological differences within and between subjects.

Results: For both parameters, all the effects mentioned above were found to be significant (Wald Z-test, p < 0.05). Further, when excluding the variance caused by sleep stage, the variances explained by demographics, time, physiology within subjects and physiology between subjects respectively accounted for 3.4%, 4.0%, 12.4% and 80.2% of the total variance for HR, and 13.7%, 2.4%, 40.9% and 43.0% for SDNN.

Conclusion: Demographics, time and within-/between-subject physiological differences have significant effects on cardiac activity during sleep. The major effects come from the differences within and between subjects in physiology, accounting for > 80% of total variance (except sleep stage). Practically, for cardiac-based sleep staging, the main challenge is to reduce these within-/between-subject differences.

0174

AUTONOMIC CHANGES AFTER SLEEP RESTRICTION - EVIDENCE OF AN ALLOSTATIC MECHANISM

Academic College Tel Aviv Jaffa, Behavioral Sciences, Tel Aviv Jaffa, Israel

Introduction: Chronic sleep problems are commonly associated with mood difficulties, which are potentially linked to neurophysiological hyperarousal. It has been previously shown that total sleep deprivation interferes with autonomic function resulting in reduced vagal tone. However, research using partial sleep deprivation (PSD) protocols, which more closely approximate a real-world model of insomnia, is limited. Here we assessed the effects of repeated PSD on physiological and self-reported responses to emotional stimuli.

Methods: After a 2-min baseline, 22 participants (28% men, ages 25 ± 2.2) viewed validated neutral and sad film clips. Electrocardiography data used to derive heart rate (HR; beats/min) and heart rate vari-