Comparison of cardiac magnetic resonance imaging and bio-impedance spectroscopy for the assessment of fluid displacement induced by external leg compression

To cite this article: Salvatore Saporito et al 2017 Physiol. Meas. 38 15

View the article online for updates and enhancements.
Comparison of cardiac magnetic resonance imaging and bio-impedance spectroscopy for the assessment of fluid displacement induced by external leg compression

Salvatore Saporito, Silviu Dovancescu, Ingeborg H F Herold, Harrie C M van den Bosch, Hans C van Assen, Ronald M Aarts, Hendrikus H M Korsten and Massimo Mischi

1 Department of Electrical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
2 Philips Research, Eindhoven, The Netherlands
3 Department of Anesthesiology and Intensive Care, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
4 Department of Radiology, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
E-mail: s.saporito@tue.nl

Received 3 May 2016, revised 20 September 2016
Accepted for publication 20 October 2016
Published 12 December 2016

Abstract
Heart failure is marked by frequent hospital admissions, often as a consequence of pulmonary congestion. Current gold standard techniques for thoracic fluid measurement require invasive haemodynamic access and therefore they are not suitable for continuous monitoring. Changes in thoracic impedance (TI) may enable non-invasive early detection of congestion and prevention of unplanned hospitalizations. However, the usefulness of TI to assess thoracic fluid status is limited by inter-subject variability and by the lack of reliable normalization methods. Indicator dilution methods allow absolute fluid volume estimation; cardiac magnetic resonance (CMR) has been recently proposed to apply indicator dilution methods in a minimally-invasive manner.

In this study, we aim to compare bio-impedance spectroscopy (BIS) and CMR for the assessment of thoracic fluid status, and to determine their ability to detect fluid displacement induced by a leg compression procedure in healthy volunteers.

The first two authors contributed equally to this article.
A pressure gradient was applied across each subject’s legs for 5 min (100–60 mmHg, distal to proximal). Each subject underwent a continuous TI-BIS measurement during the procedure, and repeated CMR-based indicator dilution measurements on a 1.5 T scanner at baseline, during compression, and after pressure release. The Cole–Cole and the local density random walk models were used for parameter extraction from TI-BIS and indicator dilution measurements, respectively. Intra-thoracic blood volume index (ITBI) derived from CMR, and extracellular fluid resistance (R_E) from TI-BIS, were considered as thoracic fluid status measures.

Eight healthy volunteers were included in this study. An increase in ITBI of 45.2 ± 47.2 ml m$^{-2}$ was observed after the leg inflation (13.1 ± 15.1% w.r.t. baseline, $p < 0.05$), while a decrease of $-0.84 ± 0.39 \Omega$ in R_E ($-1.7 ± 0.9\%$ w.r.t. baseline, $p < 0.05$) was observed. ITBV and R_E normalized by body mass index were strongly inversely correlated ($r = -0.93$, $p < 0.05$).

In conclusion, an acute fluid displacement to the thoracic circulation was induced in healthy volunteers. Significant changes were observed in the considered thoracic fluid measures derived from BIS and CMR. Good correlation was observed between the two measurement techniques. Further clinical studies will be necessary to prospectively evaluate the value of a combination of the two techniques for prediction of re-hospitalizations after admission for heart failure.

Keywords: bio-impedance spectroscopy, intra-thoracic blood volume, thoracic impedance, cardiac magnetic resonance, indicator dilution theory, thoracic fluid monitoring

(Some figures may appear in colour only in the online journal)

Introduction

Hospitalizations due to acute heart failure (HF) are a major health problem (Blair et al. 2009, Karamitsos et al. 2009); hospital admissions and re-admissions are mainly related to fluid congestion (Blair et al. 2009, Picano et al. 2010). Research has shown that congestion precedes symptoms by weeks (Adamson et al. 2003, Yu et al. 2005, Chaudhry et al. 2007, Cotter et al. 2008, Gheorghiade et al. 2010). It has been suggested that the mechanism of fluid congestion in HF patients relates to fluid redistribution to the lungs rather than to fluid accumulation (Cotter et al. 2008). Early detection of fluid congestion would therefore improve the management of HF patients (O’Connor et al. 2005, Picano et al. 2010).

Variations in body weight anticipate hospitalization for HF (Chaudhry et al. 2007, Gheorghiade et al. 2012). However, studies have shown that body weight changes during an acute HF episode (Cotter et al. 2008) are minimal and they relate poorly to improvement in patients’ symptoms during therapy (Gattis et al. 2004, Blair et al. 2009) since they may not always reflect changes in intravascular volumes (Blair et al. 2009).

Pulmonary capillary wedge pressure (PCWP) has also been used to assess pulmonary fluid status (Gheorghiade et al. 2010). However, the values of PCWP as an indirect volume measure has recently been questioned, as altered fluid status can be present also in the presence of normal PCWP values (Katz 2007).
The accumulation of intra-thoracic fluid causes a decrease in thoracic impedance (TI) (Yancy and Abraham 2003, Katz 2007) that can be detected by applying electrical currents across the thorax. Several studies have shown a consistent reduction in TI during congestion, potentially providing a measurement technique for early warning systems to anticipate acute HF decompensation (Yu et al 2005, Gheorghiade et al 2010, Weyer et al 2014). TI strongly correlated with fluid changes after intravenous diuretic administration (Conraads et al 2011).

However, TI is also influenced by adiposity, muscularity, height, intrinsic lung characteristics, and electrode placement (Bolton et al 1998, Katz 2007, Sasaki et al 2013). This may explain the relatively low sensitivity for prediction of HF events reported in several trials (Conraads et al 2011, van Veldhuisen et al 2011, Heist et al 2014, Gyllensten et al 2016a). It is likely that there is some individual variability in the optimal threshold in TI changes to detect fluid accumulation, requiring personalization of this setting for individual patients (Abraham et al 2011, Gyllensten et al 2016b).

Recently, prototypes of wearable systems for continuous, non-invasive monitoring of TI have been proposed (Medrano et al 2007, Zlochiver et al 2007) using surface electrodes. However, TI measured on the body surface is affected also by changes in skin preparation, differences in electrode placement (Yu et al 2005), and subject posture (Scharfetter et al 1997, Medrano et al 2007, Dovancescu et al 2013).

Bio-impedance spectroscopy (BIS) consists in the measurement of bio-impedance over multiple frequencies. BIS provides information about tissue characteristics (e.g. intra- and extracellular fluid volumes, fat mass, muscle mass) and has been widely used for the assessment of body composition (Kushner 1992, Moissl et al 2006). The measurement principle relies on the frequency-dependent behavior of body tissues: low frequency currents flow around the cells through the extracellular fluid; high frequency currents also flow through the capacitive cell membranes and the intracellular fluid (Scharfetter et al 1997, Bera 2014). BIS should be measured over a wide frequency range; however, for technical reasons, usually a limited frequency range is used and resistances of extracellular and intracellular fluids are then extrapolated to zero and infinite frequencies, respectively (Kanai et al 1987, Jaffrin and Morel 2008). Extrapolation is facilitated by the observation that the impedance data distribute as a semi-circle in the resistance–reactance plane, according to the Cole–Cole model (Cole and Cole 1941).

So far, no reliable normalization methods are available for the comparison of TI measurements between subjects. The clinical utility of TI measurements is therefore limited to the observation of relative changes over time within subjects (Katz 2007, Jaffrin et al 1997), thus providing only an additional tool for managing HF in patients with implanted devices.

Reference methods for measuring absolute body fluid volumes directly are based on dilution of radioisotopes (Schloerb et al 1950, Pierson et al 1982). Dilution-based measurements have been shown to be sensitive to volume changes during surgical interventions (Slutsky et al 1983), and to correlate well with measurements of filling pressures in decompensated HF patients (Gheorghiade et al 2010). In these methods, a suitable indicator is injected in the circulation. By sampling the concentration of the indicator, indicator dilution curves (IDCs) can be derived. The central volume theorem (Stewart 1921) relates fluid volumes and IDC parameters, which can be derived by model fitting (Harabis et al 2013). Depending on the intravascular or extravascular character of the used indicator, the derived volume measurements will only include blood volumes or take into account also extravascular fluids. In order to distinguish between pulmonary blood volumes and extravascular fluid volumes, often a combination of intravascular and extravascular indicator is used (Sakka et al 2000); alternatively, physiological modelling allows separation of the two compartments using only one extravascular contrast agent (Sakka et al 2000). Methods using ionizing tracers have limited
clinical applicability; even with the use of non-ionizing indicators such as dye or cold saline, the method remained invasive, as central vessel catheterization was required to sample the indicator concentration.

More recently, imaging contrast agents (CAs) have been proposed as indicators that enable the application of the method in a minimally invasive way (Mischi et al 2004, Lakoma et al 2010). In particular, cardiac magnetic resonance (CMR), the current gold standard imaging technique for the assessment of HF (Karamitsos et al 2009), allows measuring blood flow using phase contrast-MRI sequences (Wong 2014), and indicator dilution measurement using gadolinium-based CAs and dynamic contrast-enhanced MRI (DCE-MRI) sequences (Mischi et al 2009). CMR is therefore a promising minimally-invasive alternative for absolute thoracic fluid volume measurement. As gadolinium-based CAs freely distribute to the extracellular space (Aime and Caravan 2009), similarly to BIS, indicator dilution estimates based on DCE-MRI are influenced by interstitial fluids.

The costs associated with CMR limit its applicability for patient follow-up. However, the ability to intermittently determine absolute fluid volumes might complement measurement techniques able to continuously track relative changes (Katz 2007).

In this study, we aim at comparing BIS and CMR for the assessment of thoracic fluid status and to determine their sensitivity to fluid displacement obtained through a leg compression maneuver. We introduce an experimental design to induce rapid and reversible fluid displacement in healthy subjects by means of a pneumatic compression device, which excludes confounding factors associated with postural maneuvers. We present the effects of the compression procedure on TI and on CMR measurements and delineate a comparison between the two techniques based on data collected in healthy volunteers.

Materials and methods

Study population

The study was carried out at the Radiology Department of the Catharina Hospital Eindhoven, the Netherlands. The protocol was approved by the local medical ethics committee and registered as a clinical trial on clinicaltrials.gov (NCT02364193). All participants provided written informed consent at enrollment. Eligible for the study were healthy adults (age ≥ 18 years) without known history of cardiovascular pathologies, and with body mass index (BMI) between 18 and 25. Exclusion criteria were poor renal function quantified by a glomerular filtration rate < 60 ml min⁻¹, and the presence of the general contraindications for use of gadolinium-based CAs.

Eligible subjects were requested to attend two repeated sessions of external leg compression applied in supine position. Subjects were monitored using BIS in one session and CMR in the other. Between sessions, the subjects engaged in common activities of daily life for approximately 2h, in order to reduce any potential mutual influence between the two procedures. The order of the sessions was randomized.

Leg compression procedure

Passive leg raising, a common physiological maneuver used in intensive care, involves assisted raising of the legs from the horizontal position to a tilted one, to produce a gravitational displacement of blood from the lower limbs towards the thorax (Monnet et al 2006). The use of passive leg raising as a fluid displacement technique introduces undesirable effects which may
confound BIS measurements: abdominal organs, which have a lower resistance then the lungs, advance towards the thoracic cage while the thoracic contour is modified (Cassola et al 2010). Similar considerations apply to head down tilt maneuvers (Henderson et al 2009). Additionally, these maneuvers would be unpractical to perform within a closed-bore MRI scanner.

To exclude confounding factors we induced fluid displacement by means of external leg compression with a Lympha-mat Digital (Bösl Medizintechnik, Aachen, Germany) gradient pump system. The system includes an automatic air pump and a pair of inflatable leg sleeves. Each sleeve is composed of 12 overlapping air-chambers which are inflated individually in temporal succession, from distal to proximal (foot to upper leg). The gradual inflation of both leg sleeves starts simultaneously and ends when the pressure in each of the air chambers reaches a predefined value. In our study, the pressure applied to the sleeves was distributed with a spatial gradient along the leg, such that at the end of the inflation, the pressure in the four most distal chambers was 100 mmHg, in the four intermediate chambers 80 mmHg, and in the four proximal chambers 60 mmHg. Under normal operation conditions, the device automatically releases the pressure from all chambers simultaneously after the target pressure profile is reached and restarts with the inflation. For this study, the device was modified to hold the pressure in the leg sleeves after maximum inflation was achieved and to release the pressure only on manual command. At the beginning of each session, participants put on the deflated leg sleeves and then rested in supine position for at least 15 min to achieve a physiological steady state. Subsequently, the pump was started and the progressive inflation of the sleeves was typically completed in 5 min. At the end of inflation, the target pressure profile was kept constant for 5 min until the pressure was released rapidly on manual command. Participants remained in supine position for another 10 min with no external pressure applied to their legs. A schematic overview of the applied pressure timing is shown in figure 1.

Data acquisition

CMR imaging

Cardiac magnetic imaging was performed on a 1.5 T Ingenia MR scanner (Philips Medical Systems, Best, the Netherlands) using a phased-array cardiac coil.

Short-axis, two-chamber, and four-chamber view cine-loops were acquired before the leg compression using standard retrospectively vectorcardiographically-triggered steady-state free precession sequences at end-expiratory breath hold in order to assess left ventricular (LV) end-diastolic volume, end-systolic volume, and ejection fraction. Stroke volume (SV) was repeatedly measured using phase-contrast MRI; to this end, a retrospective, gated fast-field echo sequence with a 20° flip angle and a TR of 5 ms across the ascending aorta was used.

DCE-MRI images in four-chamber view were acquired using a non-steady state spoiled fast-gradient echo sequence; T1-weighting was achieved by a non-slice-selective saturation pre-pulse applied 85 ms before the acquisition. Acquisition was triggered in mid-diastole to minimize the effect of cardiac motion; the dynamic measurement was performed at end-expiratory breath-hold. Typically, a flip angle of 25° was used with a TR/TE of 6/2.9 ms, resulting in a typical voxel size of 1.6 × 1.6 × 10 mm³; parallel imaging and undersampling were used to decrease image acquisition time to approximately 150 ms.

Repeated injections of 0.2 mmol of Dotarem (Guerbet) were administered intravenously using an automated MR injector (Medrad, Indianapolis). The CA bolus was diluted into 5 ml saline solution and injected at the rate of 5 ml s⁻¹, followed by a saline flush of 15 ml. Under these conditions, a linear relationship between CA concentration and MR signal was expected (Mischi et al 2009). Following the injection, a dynamic series of at least 45 images was
acquired. In order to minimize the reciprocal influence between the repeated phase-contrast MRI and DCE-MRI measurements, a free breathing period of 20 s was allowed between the two measurements.

Bio-impedance spectroscopy

Monitoring of TI was performed using the commercial BIS device SFB7 (ImpediMed Ltd, Brisbane, Australia). The device measures bio-impedance at 256 frequencies in the range 3–1000 kHz using a tetra-polar electrode configuration: two electrodes are used for the application of an excitation current, and two for voltage measurements. The electrodes were placed on both sides of the chest, along the axillary lines at the level of the 5th intercostal spaces (figure 2). The distance between neighboring electrodes was approximately 5 cm. The location of the electrodes was selected to achieve maximal sensitivity to pulmonary fluid (Wang et al...
Monitoring consisted of continuous BIS measurements at a rate of 40 bio-impedance spectra min$^{-1}$. The TI session was designed to resemble the CMR session to facilitate an *a posteriori* comparison of the two measurement techniques. Monitoring of TI was performed in supine position and subjects were asked to perform end-expiratory breath hold at the same predefined time instances as in the CMR session (figure 1). Although TI measurements can be performed during normal breathing, the periods of end-expiratory breath hold enabled the acquisition of TI data without respiratory variations.

Timing of the measurements

Figure 1 illustrates the timing of the measurements performed before, during, and after the external leg compression. While BIS measurements were continuously acquired during the whole compression procedure, CMR measurements were performed intermittently at five time
intervals: before the beginning of the compression (baseline—BL), when the full pressure was reached (steady pressure—SP), after 300 s of maintained full pressure (before deflation—BD), 20 s after the abrupt pressure release (after deflation—AD), and 300 s after the deflation (return to baseline—RBL).

Data analysis

Cardiovascular magnetic resonance

Ventricular volumes were determined by semi-automatic tracking of the endocardial borders in the short-axis images and correcting for longitudinal shortening using CAAS MRV 3.4 (Pie Medical Imaging BV, Maastricht). CAAS Flow 1.2 (Pie Medical Imaging) was used to semi-automatically draw regions of interest in the aorta and derive the SVs.

Regions of interest were manually traced onto the DCE-MRI images series in the right ventricle (RV) and LV blood pools; IDCs were derived averaging in space the MR signal intensity within the region for each frame.

The local density random walk (LDRW) kinetic model was used to characterize the transpulmonary dilution process (Bogaard et al 1986). The model expression is:

\[
S(t) = A \left(\frac{\lambda \mu}{2 \pi t} \right) e^{-\frac{1}{2} \left(\frac{\lambda}{\mu} + \frac{1}{\tau} \right)} e^{\frac{1}{2} \left(\frac{\lambda}{\mu} + \frac{1}{\tau} \right) t}
\]

where \(S(t)\) is the MR signal intensity, \(\mu\) is the mean transit time, \(\lambda\) is a skewness parameter that relates to the Peclet number, \(A\) is a normalizing factor, and \(t\) is the time referred to as the theoretical injection time. It can be shown that this model constitutes a solution of the drift-diffusion equation (Bogaard et al 1986). The LDRW model was fitted to the obtained IDCs using an iterative Levenberg–Marquardt algorithm (Mischi et al 2004).

Intra-thoracic transit time (ITT) was defined as the difference between the mean transit time of the LV IDC and of the RV IDC. Intra-thoracic blood volume (ITBV) was obtained by multiplication of ITT by cardiac output (CO) assessed by phase-contrast MRI; ITBV and ITT were the CMR-derived measures of thoracic fluids considered in this study. Analysis of the DCE-MRI images and derived IDCs was performed using custom-made software in Matlab® 2015b (Natick, MA, USA).

Bio-impedance spectroscopy

The Cole–Cole model was used to describe the frequency dependent behavior of tissue bioimpedance as illustrated in figure 3. The model expression is (Cole and Cole 1941):

\[
Z(f) = \left(R_E || R_I \right) + \frac{R_E - \left(R_E || R_I \right)}{1 + \left(j2\pi f (R_E + R_I) C_M \right)^\alpha}
\]

The model parameters reflect extracellular fluids (\(R_E\)), intracellular fluids (\(R_I\)), the capacitive behavior of the cell membranes (\(C_M\)), and tissue heterogeneity (\(\alpha\)). All four parameters were determined from the acquired bio-impedance data using the software BioImp 5.4 (ImpediMed Ltd, Brisbane, Australia). The software uses multiple linear regression to fit a semi-circle to the data in the complex impedance plane (Cornish et al 1993). In this study, the extrapolated parameter \(R_E\) (figure 3) was used as an indicator of intra-thoracic fluid content. We averaged the derived parameter values over the breath-hold intervals to minimize measurement errors and variability due to the cardiac cycle. The mean \(R_E\) value during breath hold was compared
with CMR parameters. In order to reduce the inter-individual variability due to different body composition, we also normalized the obtained R_E value by the BMI of each subject. The analysis of the BIS data was performed in Matlab® 2015b (Natick, MA, USA).

Statistical methods

Continuous variables are presented as their mean and standard deviation. Changes in MRI and BIS parameters in the different time intervals during the leg-compression were compared using a paired t-test assuming unequal variance for the groups. A p-value smaller than 0.05 was considered statistically significant. Correlation between BIS and MRI derived parameters was expressed as Spearman correlation coefficient. ITBV and SV assessed by CMR were indexed to body surface area resulting in intra-thoracic blood volume index (ITBI) and stroke volume index (SVI). Body surface area was determined using the Du Bois formula (Du Bois and Du Bois 1989).

Results

A total of eight healthy volunteers were included in this study. Characteristics of the subjects are presented in table 1. Baseline values for the CMR and BIS considered parameters are shown in table 2.

Cardiovascular MR results

CMR was feasible in 38 out of the 40 (five intervals for each subject) planned time intervals. Two DCE-MRI measurements could not be performed due to problems in the contrast injection procedure. For one subject, the DCE-MRI during RBL measurement resulted in a low signal-to-noise ratio, reflected in a poor determination coefficient for the LV IDC LDRW fit ($R^2 < 0.7$); the measurement was therefore excluded from further analysis. Determination coefficients of the LDRW fits for the remaining cases ($n = 37$) were 0.98 ± 0.02 for the LV IDC and 0.98 ± 0.03 for the RV IDC, respectively. An example of CMR based ITBV measurement is shown in figure 4.
The observed changes in aortic flow assessed by phase-contrast MRI, and in IDCs derived from DCE-MRI recordings for one subject are shown in figure 5.

We observed changes of 45.2 ± 47.2 ml m$^{-2}$ in ITBI by CMR when comparing BL and SP (significantly different, $p < 0.05$), and of 30.6 ± 34.7 ml m$^{-2}$ when comparing BL and BD ($p < 0.05$). After release of the pneumatic pressure the ITBI changes were respectively -29.4 ± 24.4 ml m$^{-2}$ ($p < 0.05$) and -26.6 ± 31.2 ml m$^{-2}$ ($p < 0.05$) when comparing BD with AD and RBL, respectively.

When normalizing the ITBI changes to the baseline value for each individual, the change in ITBI after inflation was $13.1 \pm 15.1\%$ (BL to SP, statistically significant increase, $p < 0.05$), while the decrease after deflation (BD to RBL) was $-7.2 \pm 9.3\%$ (statistically significant decrease, $p < 0.05$).

When considering the SVI, the increase after inflation (BL to SP) was 3.2 ± 5.0 ml m$^{-2}$ ($p > 0.20$), while the change in ITT was 0.11 ± 0.66s ($p > 0.68$). After deflation (BD to RBL), the changes were -1.5 ± 4.9 ml m$^{-2}$ for SVI ($p > 0.34$), and for -0.3 ± 0.8s ITT ($p > 0.29$), respectively. For the heart rate, the change after inflation (BL to SP) was 2.1 ± 5.4s$^{-1}$ ($p > 0.33$), while after the deflation (BD to RBL) was 0.7 ± 3.8s$^{-1}$ ($p > 0.61$).

BIS results

Examples of multi-frequency bio-impedance data acquired during different time intervals (BL and SP) of the leg compression protocol and the corresponding Cole–Cole model is shown in

| Table 1. Demographics and general characteristics of the included population. |
|------------------|------------------|
| Variable | Value |
| Gender: male/female | 8/0 |
| Age, years | 39 ± 13 |
| BMI, kg m$^{-2}$ | 23.9 ± 2.3 |
| BSA, m2 | 1.95 ± 0.12 |
| Creatinine clearance, ml min$^{-1}$ | 80.0 ± 8.4 |
| LVEDVI, ml m$^{-2}$ | 68.5 ± 12.8 |
| LVESVI, ml m$^{-2}$ | 27.7 ± 9.0 |
| LVEF, % | 60.4 ± 7.4 |

BMI, body mass index; BSA, body area surface; LVEDVI, left ventricular end-diastolic volume index; LVESVI left ventricular end-systolic volume index; LVEF, left ventricular ejection fraction.

| Table 2. Magnetic resonance imaging and bio-impedance spectroscopy derived parameters at baseline. |
|------------------|------------------|
| Variable | Value |
| CMR-SVI, ml m$^{-2}$ | 45.3 ± 5.1 |
| CMR-HR, beats min$^{-1}$ | 61.9 ± 6.0 |
| CMR-CI, (min · m2)$^{-1}$ | 2.79 ± 0.25 |
| CMR-ITBI, ml m$^{-2}$ | 352.2 ± 37.0 |
| BIS-R_{E}, Ω | 50.6 ± 5.7 |

CMR, cardiac magnetic resonance; SVI, stroke volume index; HR, heart rate; CI, cardiac index; ITBI, intra-thoracic blood volume index; BIS-R_{E}, extracellular resistance derived from bio-impedance spectroscopy.
figure 6(a). Figure 6(b) shows an example of R_E variation during the entire BIS measurement session of a subject.

In the overall study group we observed changes in R_E of -0.84 ± 0.39 Ω (BL to SP, $p < 0.001$), -0.15 ± 0.20 Ω (BL to BD, $p < 0.05$), 0.52 ± 0.35 Ω (BD to AD, $p < 0.01$), and 0.59 ± 0.45 Ω (BD to RBL, $p < 0.01$). When normalizing the R_E measures to the baseline value for each individual, the decrease after inflation was $-1.7 \pm 0.9\%$ ($p < 0.05$), while the increase after deflation was $1.2 \pm 0.9\%$ ($p < 0.05$).

Comparison of BIS and CMR results

Changes in ITBI, derived from CMR measurements, and in R_E, obtained by BIS model fit, normalized as % of baseline values are shown in boxplots in figure 7.
ITT and R_E normalized by BMI (R_{En}) at baseline correlated well ($r = -0.92, p < 0.005$), as shown in figure 8. ITBV and R_{En} were also significantly correlated at baseline ($r = -0.93, p < 0.005$ for ITBV, $r = -0.73, p < 0.05$ when considering ITBI). Correlation between ITT (ITBV) and BMI was not significant, $p > 0.70$ ($p > 0.42$).

Changes in ITT and R_E during deflation transition (BD to RBL) were correlated ($r = 0.75, p < 0.05$) as shown in figure 8. Correlation between changes in ITT and changes in R_E during other transitions were not significant.

Discussion

Purpose of this study was to evaluate and compare the changes in physiological parameters measured by BIS and CMR in response to acute fluid displacement induced by application of external pneumatic pressure on the lower extremities.
Repeated DCE-MRI measurement during the leg compression was feasible in volunteers. However, the response to sleeves deflation was accompanied by an increase in heart rate caused by a baroreceptor reflex to buffer the sharp decrease in blood pressure (Randall et al. 1984); this caused problematic electrocardiographic trigger for the CMR measurement, resulting in inconsistent measurement timing. We therefore excluded from the analysis the AD measurement. The baseline ITBI measured by DCE-MRI is in line with previous findings reported by Milnor et al. (1960), where an indexed volume of 365 ml m$^{-2}$ was measured by a dye-dilution method and simultaneous bilateral cardiac catheterization in healthy volunteers.

BIS and CMR measurements were performed within 2 hours in each subject to exclude slow fluid status changes, e.g. related to dietary fluid intake. The adopted dose of MR CA was small compared to clinically approved doses for perfusion studies (Thomsen 2007), to minimize adverse effects and potential accumulation of the CA. The possible mutual influence of phase contrast-MRI and DCE-MRI measurements has been shown to be minimal in the literature (Makowski et al. 2015). We used a pneumatic leg compression for lymphedema therapy as a non-invasive means to achieve a reversible displacement of blood volume from the legs towards the thorax. Unlike lymphedema therapy consisting of repeated inflation cycles with the pressure released seconds after the end of inflation, we maintained the pressure for a longer duration (5 min) in order to perform measurements. To maximize the displaced blood volume we applied high pressures (60–100 mmHg) to the individual chambers of the sleeves, with a pressure gradient along each leg to minimize the perceived discomfort associated with the prolonged compression at high pressures.

When applying external compression to the legs, we observed a significant decrease in thoracic R_E which, according to the Cole–Cole model, reflects an increase in extracellular fluid volume that lowers the opposition of thoracic tissues to the flow of electric current. The increase in extracellular fluids in the thorax is most likely associated with the displacement of blood volume including blood plasma, i.e. extracellular fluid from the legs towards the upper body. We have also observed an increase in ITBI measured by CMR. Both effects appeared reversible as both BIS and CMR parameters returned to baseline values after the release of the

Figure 8. Comparison between bio-impedance spectroscopy (BIS) and cardiac magnetic resonance imaging (CMR) measures. (a) Comparison between intra-thoracic blood volume (ITBV) measured by CMR and extracellular resistance (R_E) normalized to body mass index (BMI) baseline values for all subjects ($n = 8$); (b) comparison between absolute changes in intra-thoracic transit time (ITT) and R_E from before deflation to return to baseline.
external pressure. No significant changes were observed between the repeated measurements performed during the pressure hold time (SP and BD); this may be due to the relatively small sample size, not sufficient to elucidate the physiological adaption to the applied pressure, and the corresponding inter-subject variability in the adaption.

The presented results suggest that the proposed measurement techniques are sensitive to acute blood displacement in healthy volunteers. However, the inter-subject variability of these effects was relatively large; possible factors to explain this variability may include the different mental distress experienced by the subjects during the procedures (Carter et al. 2005), and the nociceptive stimulation (Randall et al. 1984) caused by the compression, which are known to influence peripheral vasculature status.

In the literature, there is general agreement that pneumatic leg compression results in increase of SV and CO (Randall et al. 1984). It is also known from the literature that rapid application of 100 mmHg pressure over the surface of the body by means of anti-shock trousers causes acute, reversible redistribution of blood from peripheral vasculature to the central circulation in normal man (Bondurant et al. 1957, Bivins et al. 1982). In particular, Bondurant et al. (1957) evidenced this effect by observing an increase in radiographic density of the lungs and in thoracic radioactivity after injection of labeled albumin. Tenney and Honig (1955) calculated a displacement of 250 ml of blood in normal subjects at 40 mmHg inflation by measuring displacement of the center of gravity in subjects. Similar figures for the blood displaced volume (from 210 to 450 ml) were estimated from Hanke (1985). Our results are inline, although we observed a relatively smaller average increase in the order of 90 ml in the pulmonary circulation. It is reasonable to expect that the blood displaced from the legs did not only distribute to the pulmonary circulation but also to other vascular networks in the upper body. Other authors suggested that a larger volume (750–1000 ml) of blood was displaced from the lower body, into the upper body (Randall et al. 1984). However, their findings were in context of hemorrhagic patients, a severely impaired hemodynamic scenario which may not generalize in healthy volunteers.

The proposed experimental design could be further exploited for improving the understanding of pulmonary hemodynamics; in particular, further research would be needed to investigate the extent and the temporal dynamics of the physiological adaption to the applied external pressure. It has been noticed that, in controlled experiments, during pure blood displacement the impedance spectrum does not fit the simple depressed Cole–Cole circle at high frequencies, suggesting further frequency dependent conduction properties of the erythrocytes (Scharfetter et al. 1997). Clinical utility of BIS measurement could be increased if frequency-dependent markers for blood instead of general fluid content could be identified. The combined use of purely intravascular and extravascular imaging CA may provide a validation strategy for this phenomenon.

We suggest that a combination of BIS and CMR measurements should be prospectively tested for its ability to predict re-hospitalization after admission for HF. Direct blood volume measurement offers complementary information that could improve the clinical usefulness of serial TI measurements obtained during a follow-up period. Absolute volume measurements might be used to ‘calibrate’ the TI measurement, normalizing its baseline value, and potentially improving clinical decision making based on subsequent BIS measurements (Katz 2007). For instance, TI-based early warning systems may be programmed to achieve high sensitivity to fluid congestion in order to identify patient episodes which may lead to hospitalization. An inherent number of unnecessary interventions due to false alarms may be reduced through personalization of TI-based early warning systems with patient-specific thresholds. Personalization may be achieved by direct volume assessments in each patient during the initialization phase of the TI warning system or based on models of the relationship between
absolute fluid volumes, TI, and anthropomorphic characteristics e.g. chest geometry and composition. Both BIS and CMR have potential for discriminating the intra- and extra-vascular thoracic fluid status, not evaluated in this work. Further research is therefore needed to fully characterize the possibly nonlinear relationship between BIS and CMR parameters.

Limitations

Limitation of the study was the prolonged end-expiratory breath hold required for the CMR measurement, which is subjective and it may be challenging to obtain consistently in HF patients. Moreover, CMR is generally costly and gadolinium based CA may introduce risks when renal function is impaired. However, contrast-enhanced ultrasound is a valid alternative for blood volume assessment (Herold et al 2016a), with purely intravascular ultrasound CAs associated with lower side effects (Bommer et al 1984). Additionally, ultrasound allows indicator dilution measurement in free breathing, with results in good agreement with CMR (Herold et al 2016b).

Conclusions

An acute and reversible displacement of blood from the lower extremities to the thoracic circulation was induced in normal subjects by external leg compression. During compression, significant changes were observed in the physiological parameters derived from BIS and CMR measurements. Consistent changes with opposite trends were observed when the pressure was released. A good correlation was observed between R_E derived from BIS and ITBV assessed by DCE-MRI. Further research is needed to fully characterize the relationship between changes in CMR and BIS measures of fluid content and to evaluate the feasibility of CMR-based BIS patient-specific calibration.

Acknowledgments

This research was supported by the Dutch Technology Foundation STW with Open Technology Program (OTP) grant 11865.

The authors acknowledge G Wahyulaksana, for his assistance in implementing the leg compression protocol, and M Kohler, for operating the MRI scanner. The authors thank M Castello from Istituto Italiano di Tecnologia for the fruitful discussions.

References

Abraham W T et al 2011 Intrathoracic impedance versus daily weight monitoring for predicting worsening heart failure events: results of the fluid accumulation status trial (FAST) Congestive Heart Failure 17 51–5

Adamson P B et al 2003 Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system J. Am. Coll. Cardiol. 41 565–71

Blair J E A et al 2009 Weight changes after hospitalization for worsening heart failure and subsequent re-hospitalization and mortality in the EVEREST trial Eur. Heart J. 30 1666–73
Du Bois D and Du Bois E F 1989 A formula to estimate the approximate surface area if height and weight be known. 1916 Nutrition 5 303
Gheorghiade M et al 2010 Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine Eur. J. Heart Failure 12 423–33
Gheorghiade M et al 2012 A comprehensive, longitudinal description of the in-hospital and post-discharge clinical, laboratory, and neurohormonal course of patients with heart failure who die or are re-hospitalized within 90 d: analysis from the EVEREST trial Heart Failure Rev. 17 485–509
Heist E K et al 2014 Analysis of different device-based intrathoracic impedance vectors for detection of heart failure events (from the detect fluid early from intrathoracic impedance monitoring study) Am. J. Cardiol. 114 1429–56

Herold I H F et al 2016b Pulmonary transit time measurement by contrast-enhanced ultrasound in left ventricular dysynchrony Echo Res. Pract. 3 35–43

Karamitsos T D, Francis J M, Myerson S, Selvanayagam J B and Neubauer S 2009 The role of cardiovascular magnetic resonance imaging in heart failure J. Am. Coll. Cardiol. 54 1407–24

Milnor W R, Jose A D and McGaff C J 1960 Pulmonary vascular volume, resistance, and compliance in man Circulation 22 130–7

O’Connor C M, Stough W G, Gallup D S, Hasselblad V and Gheorghiade M 2005 Demographics, clinical characteristics, and outcomes of patients hospitalized for decompensated heart failure: observations from the IMPACT-HF registry J. Cardiac Failure 11 200–5

Picano E, Gargani L and Gheorghiade M 2010 Why, when, and how to assess pulmonary congestion in heart failure: pathophysiological, clinical, and methodological implications Heart Failure Rev. 15 63–72

Stewart G N 1921 The pulmonary circulation time, the quantity of blood in the lungs and the output of the heart. Am. J. Physiol. 58 20–44