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Abstract— This paper presents an actigraphy-based approach 

for sleep/wake detection for insomniacs. Due to its relative 

unobtrusiveness, actigraphy is often used to estimate overnight 

sleep-wake patterns in clinical practice. However, its 

performance has been shown to be limited in subjects with sleep 

complaints such as insomniacs. Quantifying activity counts on 

30-s epoch basis, as usually done in regular actigraphy, may lead 

to an underestimation of wake periods where the subject shows 

reduced body movements. We therefore propose a new 

actigraphic feature to characterize the ‘possibility’ of epochs 

being asleep (or awake) before or after its nearest epoch with a 

very high activity levels. It is expected to correctly identify some 

wake epochs when they are very close to the high activity epochs, 

although they can be motionless. A data set containing 25 

insomnia subjects and a linear discriminant classifier were used 

to test our approach in this study. Leave-one-subject-out cross 

validation results show that combining the new and the 

traditional actigraphic features led to a markedly improved 

performance in sleep/wake detection compared to that using the 

traditional feature only, with an increase in Cohen’s kappa from 

0.49 to 0.55.  

I. INTRODUCTION 

Insomnia is one of the most common sleep disorders, and 
epidemiological studies have estimated a prevalence of ~30% 
of the world population suffering from insomnia symptoms 
[1]. Many factors can lead to insomnia, such as increased age, 
hyperarousals, daytime stress events, and sympathetic activity 
during the night compared with healthy subjects [2], [3], [4]. 
Diagnosis of insomnia symptoms and objective assessment of 
sleep quality often rely on retrieving and analyzing nocturnal 
sleep-wake patterns [5], [6]. Recommended by the American 
Academy of Sleep Medicine (AASM), polysomnography 
(PSG) with manual scoring on 30-s epoch basis is used to aid 
in the diagnosis of sleep/wake disorders [7]. However, PSG is 
usually required to be performed in a sleep laboratory with the 
use of many sensors with electrodes attached to the human 
body, not possible to provide a long-term monitoring of 
subjects with potential sleep problems, in particular the ones 
who suffer from insomnia. In addition, the first night or reverse 
first night effect of using PSG in a sleep lab would lead to 
under representation of usual sleep-wake patterns [8]. 

In practice, the unobtrusive, low-cost, and ease-of-use of 
wearable sensor technologies, such as wrist-worn actigraphy, 
enable sleep monitoring at home [9], [10]. In the past decade, 
a relatively high performance of sleep/wake detection using 
actigraphy has been achieved for healthy subjects without 
sleep disturbances [11], [12], [13], [14]. However, this is not 
yet the case for subjects with insomnia who have difficulty of 
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falling or maintaining sleep [6], causing increased wake 
periods and more ‘active’ sleep epochs.  

Traditional actigraphy measures “activity counts” (ACT) 
per 30 s and thereby identifying wakefulness with reduced 
body movements (i.e., wake epochs with low physical activity 
or body motion) is one of the main challenges in achieving a 
reliable sleep/wake detector. This is in particular the case for 
insomniacs or subjects with insomnia symptoms who often 
have a large proportion of wake epochs during overnight sleep. 
Figure 1 plots the histogram of 30-s epoch-based ACT values, 
measured with Philips Actiwatch (Philips Respironics) during 
wake and sleep states from 25 insomniacs, annotated manually 
based on simultaneously recorded PSG. More than 40% of 
wake epochs are characterized by relatively low activity levels 
(e.g., ACT < 10), which seem difficult to be separated from 
sleep epochs. On the other hand, sleep epochs (with body 
movements or arousals [15] are also difficult to distinguish 
from wake epochs using ACT. To these matters, in addition to 
the traditional actigraphic feature ACT that quantifies activity 
counts only, we propose a new actigraphic feature in this study 
taking into account the ‘possibility’ of epochs being asleep or 
awake nearby (before or after) very high activity levels. This 
can be done by quantifying the time difference or distance 
between each epoch and its nearest epoch with lots of body 
motions (very high activity level), in correspondence to a large 
ACT value. The hypothesis here is that the epochs or periods 
closer to that with a very high level of activity (and therefore 
with a smaller time difference) are more likely to correspond 
to wake state, albeit possibly with less body movements.  

In this paper, we present a new method to automatically 
classify wake and sleep for insomniacs based on wrist-worn 
actigraphic data, where the inclusion of the new actigraphic 
feature is expected to help increase the classification accuracy. 
We use a linear discriminant-based classifier, which has been 
extensively used for sleep/wake detection in previous studies 
[11], [13], [16].  

Figure 1.  Normalized histogram of epoch-based actigraphy data (ACT) in 

different levels of activity. The data was measured from 25 insomniacs. 
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II. METHODS 

A. Subjects and Data 

Single-night recordings from 25 self-reported insomniacs 
(11 females and 14 males) were included in this study. The 
subjects had a mean age of 45.0 ± 13.6 years and a mean body 
mass index (BMI) of 27.6 ± 3.8 kg/m2. The collection of full 
PSG data (Alice 5 PSG, Philips Respironics) and actigraphy 
(Actiwatch, Philips Respironics) was performed at the Sleep 
Health Center, Boston, USA, in 2009. On average, 6.6 ± 0.9 
hours’ recorded data per subject was used, where sleep and 
wake epochs accounted for 71.5 ± 0.17% and 28.5 ± 0.17%, 
respectively. Note that, for all continuous (non-overlapping) 
30-s epochs, sleep stages were manually scored by an external 
sleep technician according to the AASM guidelines [7]. All 
subjects signed an inform consent.  

B. Actigraphic Features 

The existing actigraphic feature for each 30-s epoch was 
ACT. The new actigraphic feature proposed in this paper was 
obtained based on ACT. For each epoch, it calculated the 
logarithm of the distance to the nearest epoch with a very high 
activity level (DHAL). Assuming a series of n epoch-based 
ACT feature values a = {a1, a2, …, an}, aT is a subset of a in 
which feature values are larger than a threshold T, where the 
associated epoch indices are eT = {e1, e2, …, em}. Accordingly, 
b = {b1, b2, …, bn} is a set of DHAL feature values from the 
same series. The value bx at epoch x (x = 1, 2, …, n) can then 
be computed such that 

bx = ln(min{|x – e1|, |x – e2|, … , |x – em|}) .      (1) 

Here T was experimentally chosen as 100, indicating that an 
epoch with an ACT value larger than 100 was considered to be 
associated with a very high level of activity, probably during a 
wake state. In case the maximal ACT value of an overnight 
recording was not larger than 100, we used the 95% percentile 
of the ACT values over that recording instead. Furthermore, a 
moving averaging was applied to smooth the DHAL feature 
values for each overnight recording. We experimentally chose 
the moving averaging window size to be 40 epochs that could 
optimize the detection performance based on solely training 
data. As previously stated, to a certain extent, DHAL could 
reflect the possibility of being asleep of an epoch, by analyzing 
how far (i.e., absolute time distance) of that epoch to its nearest 
wake epoch with very high activity.  

C. Sleep/Wake Detection 

To automatically detect sleep or wake epochs, a linear 
discriminant-based classifier was adopted in this work. Note 
that the probabilities of being awake and asleep can vary over 
the night for this specific group of subjects showing insomnia 
symptoms. For example, the probability of being awake at the 
beginning of the night (after entering the bed and turning off 
the lights) should be much higher that of being asleep. For that 
reason, we used a time-varying prior probability for each 
epoch, which used the time of night (or epoch index) to exploit 
those variations. It was computed by counting frequency of 
each epoch being scored as each state (sleep or wake). The 

classifier used in this work was the same as that used in our 
previous work [13], [16].  

In regard to the performance evaluation of sleep/wake 
detection, we used the traditional metrics of accuracy, 
specificity, sensitivity, and precision. Moreover, due to the 
data imbalance in our data set (<30% wake epochs), we used 
the receiver operating characteristic (ROC) curve that can 
provide an overview detection performance when choosing 
different classifier decision-making thresholds. Additionally, 
we also calculated the Cohen’s kappa coefficient (κ), a metric 
that compensates for chance agreement. In clinical practice, to 
objectively assess nocturnal sleep quality, sleep parameters per 
night (such as sleep efficiency or SE, sleep onset latency or 
SOL, and wake after sleep onset or WASO) are often derived 
from the estimated sleep-wake pattern. 

A leave-one-subject-out cross validation (LOOCV) was 
employed to train and validate the classification performance. 
Performance results were pooled over all 25 subjects. Note that 
the final classifier decision-making threshold was selected to 
optimize average kappa value over all iterations of LOOCV 
based on training data. 

III. RESULTS AND DISCUSSION 

In Figure 2, we plot DHAL feature values (median and 
inter-quartile range, pooled over all subjects) in sleep and 
wake states as well as in wake state with different activity 
levels, i.e., ACT = 0, 0-5, 5-10, 10-20, 20-50, 50-100, >100. It 
shows that the wake epochs with higher activity correspond to 
a smaller DHAL value, indicating that they were closer to their 
nearest epoch (possibly wake) with a very high level of 
activity. We also see in the figure that this new feature seems 
capable to separate sleep epochs and some wake epochs 
having a relatively low activity level while they could not be 
distinguished with ACT. Compared with sleep epochs, those 
low activity wake epochs correspond to a smaller DHAL 
value. Nevertheless, we can also see in the figure that 
discriminating between sleep and wakefulness with no body 
motion is still difficult. 

Figure 2.  Boxplots of DHAL feature values in sleep and wake states as 

well as wake state with different levels of activity (i.e., ACT) from data 
pooled over all 25 insomniacs. Median and inter-quartile range are shown 

and outliers are removed for readibility. 
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The LOOCV results of sleep/wake detection are presented 
in Table I. The table indicates that, when combining the 
existing actigraphic feature ACT and the new feature DHAL 
proposed in this work, the sleep/wake detection performance 
was markedly improved compared to that when using ACT 
only (Cohen’s kappa coefficient from 0.49 to 0.55). This can 
also be seen in Figure 3 that plots the pooled ROC curves using 
the two feature sets (ACT and ACT+DHAL). Note that, for 
each feature set, the ROC curve was generated by varying the 
classifier’s threshold simultaneously for all iterations during 
the LOOCV procedure. The figure illustrates the overview 
performance of sleep/wake detection in the entire thresholding 
solution space of the classifiers. A larger area under the ROC 
curve (AUROC) of 0.85 was achieved when using the 
combined feature set (ACT+DHAL) in comparison with that 
of 0.76 when using ACT feature set. Interestingly, we 
observed that adding the new feature DHAL to the feature set 
resulted in a clearly decreased false negatives and an increased 
sensitivity.  

TABLE I.  PERFORMANCE COMPARISON (LOOCV) OF SLEEP/WAKE 

DETECTION USING DIFFERENT FEATURE SETS, WHERE DETECTION RESULTS 

ARE POOLED OVER ALL 25 INSOMNIACS  

Metric* 

Feature set 

ACT ACT+DHAL 

Sensitivity 0.53 0.60 

Specificity 0.92 0.92 

Precision 0.71 0.72 

Accuracy 0.82 0.84 

Kappa 0.49 0.55 

AUROC 0.76 0.85 

* Sensitivity: true positive rate, specificity: true negative rate, precision: positive 

predictive value, accuracy: percentage of correctly detected epochs, Kappa: Cohen’s 

kappa coefficient of agreement, AUROC: area under the receiver operating 

characteristic (ROC) curve.  

Note that here wake was considered positive class and sleep negative class. 

 
Figure 3.  ROC curves of sleep/wake detection using the two feature sets 

ACT and ACT+DHAL, detection results were pooled over all 25 

insomniacs after LOOCV.  

 

The absolute errors of estimating the sleep parameters SE, 
SOL, and WASO are given in Table II, in which mean and 
standard deviation results over all 25 insomnia subjects are 
computed. It shows that using the feature set ACT+DHAL 
resulted in a better performance in estimating SOL but a worse 
performance in estimating SE and WASO compared with the 
use of ACT only. Moreover, large standard deviations between 
subjects can be seen in the table. In general, the absolute 
estimation errors in estimating the sleep parameters for 
insomniacs are still larger than those for healthy subjects [11], 
[12]. It should be noted that, in this work, the decision-making 
threshold of the sleep/wake classifier was chosen to optimize 
Cohen’s kappa coefficient. However, in order to optimize the 
performance of estimating a certain sleep parameter, the 
classifier’s threshold should be selected to minimize the 
estimation error of that sleep parameter. This merits further 
investigation.  

TABLE II.  ABSOLUTE ERRORS OF ESTIMATING SLEEP PARAMETERS 

(SE, SOL, AND WASO), WHERE THE ESTIMATION RESULTS ARE COMPUTED 

AS MEAN ± STANDARD DEVIATION OVER ALL 25 INSOMNIACS  

Sleep parameter* 

Feature set 

ACT ACT+DHAL 

SE (%) 9.2 ± 10.6 10.7 ± 10.5 

SOL (min) 24.1 ± 34.7 19.8 ± 39.5 

WASO (min) 28.9 ± 28.8 31.0 ± 26.5 

* SE: sleep efficiency - ratio between total sleep time and total time in bed, SOL: 

sleep onset latency - the time it took before the subject fell asleep (i.e., the period 

between the beginning of a recording and the first epoch that is annotated or 

classified as sleep according to the AASM guidelines [4]), WASO: wake after 

sleep onset - total wake time after sleep onset time. 

Although the addition of the proposed actigraphic feature 
DHAL improved the performance in sleep/wake detection for 
insomnia subjects, it is still inferior to that reported for healthy 
subjects (kappa value of 0.58 in [13]). As shown in Figure 2, 
the main challenge of actigraphy-based sleep/wake detection 
is to separate wakefulness with low activity and sleep in which 
a similar level of activity was found. In fact, in order to 
improve the detection performance, many previous studies 
have shown the effectiveness of incorporating cardiac and 
respiratory features in addition to actigraphy for healthy 
subjects [11], [13], [16], [18]. These features exploit the 
relation between sleep stages and autonomic cardiorespiratory 
activity [19], [20]. Yet the benefit of using these features in 
sleep/wake detection for insomniacs or for subjects suffering 
from comorbid insomnia symptoms still needs to be 
investigated in the future. 

A relatively small data set was considered in this study, 
possibly producing a detection model that is not robust for a 
wide range of characteristics such as age, severity of insomnia 
(e.g. mild, moderate, and severe), type of insomnia (e.g. onset, 
maintenance, and terminal), or factors that causes insomnia 
symptoms (e.g. daytime stress, anxiety, jetlag, and diet) [1], 
[2], [21]. Therefore, training sleep/wake detection models that 
are specified according to these categories based on a larger 
data set merits further exploration. In that case, a pre-screening 
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procedure is required to obtain those characteristics before the 
sleep/wake detection. 

An important limitation of this study is related to the data 
set used to test the algorithm being limited to subjects suffering 
from insomnia. In a practical clinical application, if this 
technology were to be used in the screening, assessment or 
even to aid diagnosis of insomnia, it is not known a priori if 
the subject actually suffers from the disorder or not. The 
evaluation of this technique on a control group of subjects with 
other, or even without any sleep disorders warrants further 
research.  

IV. CONCLUSION 

An actigraphy-based approach of automatic sleep/wake 
detection for insomniacs was described. In addition to the 
traditionally used actigraphy feature that quantifies activity 
counts in 30-s epochs, we propose a new feature in order to 
characterize the possibility of occurrence of sleep or wake state 
before and after the epochs with a very high level of activity. 
This feature was demonstrated to help correct some false 
negatives (i.e. the wake epochs that were misclassified as sleep 
epochs). As a result, an increased sensitivity was achieved that 
resulted in an improved detection performance accordingly, 
promising a reliable sleep/wake detector for insomnia patients 
or subjects with insomnia symptoms. 
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