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An actigraphy method includes receiving a physiological
parameter signal as a function of time for a physiological
parameter other than body motion (such as electrocardiog-
raphy or a respiration monitor), computing a body motion
artifact (BMA) signal as a function of time from the physi-
ological parameter signal (for example, using a local signal
power signal, a local variance signal, a short-time Fourier
transform, or a wavelet transform over epochs of duration on
order a few minutes or less), and computing an actigraphy
signal as a function of time from the BMA signal, for
example by applying a linear transform to the BMA signal
and optionally applying filtering such as median removal
and/or high-pass filtering.
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ACTIGRAPHY METHODS AND
APPARATUSES

The following relates generally to the medical monitoring
arts, actigraphy arts, sleep assessment arts, and related arts.

Actigraphy is a relatively unobtrusive method of moni-
toring human rest/activity/sleep cycles. The subject being
monitored wears a small device which comprises an accel-
erometer and which is used to measure gross motor activity.
Typically worn at the location of the wrist, the actigraphy
device is mostly deployed in a wrist-watch-like form factor,
which is familiar, and relatively comfortable to the user.
Actigraphy is gaining acceptance for ambulatory and home-
based sleep assessment, in the healthcare as well as the
consumer domain. Actigraphy devices such as the Actiwatch
product line (available from Koninklijke Philips N. V,,
Eindhoven, the Netherlands) are accepted clinical tools for
monitoring sleep/wake patterns and to help identify and
monitor Circadian Rhythm Disorders, Insomnia, Shift work
disorders, and so forth. These devices may be worn on
mid-to long-term investigations, typically spanning weeks
or months. Actigraphy advantageously provides a time log
of activity over the investigation period.

In some situations, body movements cannot be measured
using displacement, velocity or acceleration sensors placed
on the person’s body or on a support system such as a chair
or a bed. For example, such a situation may arise for
monitoring systems that do not include an actigraphy device
on-board or readily incorporated. For example, a Holter
monitor (also known as an Ambulatory Electrocardiography
device) uses electrocardiography (ECG) to monitor cardiac
activity during extended periods of 24 hours or longer.
Based on these measurements, cardiologists or other physi-
cians can diagnose the presence of cardiac disorders.

The following discloses a new and improved systems and
methods that address the above referenced issues, and oth-
ers.

In accordance with one aspect, a physiological monitoring
device comprises a sensor configured to generate a physi-
ological parameter signal as a function of time for a physi-
ological parameter other than body motion, and an elec-
tronic digital signal processing (DSP) device configured to
perform operations including: computing a body motion
artifact (BMA) signal as a function of time from the physi-
ological parameter signal, and computing an actigraphy
signal as a function of time from the BMA signal.

In accordance with another aspect, a physiological moni-
toring method comprises: receiving a physiological param-
eter signal as a function of time for a physiological param-
eter other than body motion; computing a body motion
artifact (BMA) signal as a function of time from the physi-
ological parameter signal; and computing an actigraphy
signal as a function of time from the BMA signal. The
computing operations are suitably performed by an elec-
tronic data processing device. In some embodiments, the
operation of computing a BMA signal as a function of time
from the physiological parameter signal comprises comput-
ing a local signal variance signal from the physiological
parameter signal, computing a Short-Time Fourier Trans-
form (STFT) signal from the physiological parameter signal,
or computing a wavelet transform signal from the physi-
ological parameter signal.

In accordance with another aspect, a non-transitory stor-
age medium stores instructions readable and executable by
an electronic data processing device to perform a physi-
ological monitoring method comprising: computing a body
motion artifact (BMA) signal as a function of time from a
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2

physiological parameter signal as a function of time for a
physiological parameter other than body motion; and com-
puting an actigraphy signal as a function of time from the
BMA signal.

The invention may take form in various components and
arrangements of components, and in various steps and
arrangements of steps. The drawings are only for purposes
of illustrating the preferred embodiments and are not to be
construed as limiting the invention.

FIG. 1 diagrammatically illustrates an ambulatory subject
monitoring system including an actigraphy synthesis mod-
ule as disclosed herein.

FIG. 2 illustrates an example of a simultaneously
recorded actigraphy, respiratory effort (thoracic) and ECG
signals, with an artifact.

FIG. 3 illustrates an example of the computed local signal
power for a segment of a respiratory effort signal.

FIGS. 4(a) and 4(b) illustrate the local signal power
computed for two full night recordings.

FIG. 5 illustrates a short respiratory effort segment along
with simultaneously acquired accelerometer-based actigra-
phy and the local variance.

FIG. 6 illustrates a computed local signal variance on an
ECG signal.

FIG. 7 illustrates a local signal variance on a full night
ECG recording.

FIG. 8 illustrates a spectrogram representation of a seg-
ment of a respiratory effort signal with a Body Movement
Artifact (BMA), along with simultaneously acquired accel-
erometer-based actigraphy.

FIG. 9 illustrates a spectrogram of a respiratory effort
signal for a full night recording, together with a simultane-
ously recorded accelerometer-based actigraphy signal.

FIG. 10 presents a scalogram illustrating continuous
wavelet transform (CWT) values obtained with a db4 wave-
let on 128 scales for each sample of a respiratory effort
signal segment with a BMA.

FIG. 11 illustrates the values obtained after taking the
maximum CWT value for each scale within the boundaries
of each epoch (where each epoch is delineated with dashed
vertical lines in the respiratory effort plot).

FIG. 12 illustrates CWT-based BMA versus time signal
extraction results for a whole-night recording.

FIG. 13 plots an example of an accelerometer-based
actigraphy signal (top plot), respiratory effort signal with a
BMA (middle plot) and body movement estimation obtained
with the Maximum CWT coefficients for each epoch (bot-
tom plot).

FIG. 14 plots an example of an accelerometer-based
actigraphy signal (top plot) and body movement estimation
(bottom plot) for a full night recording.

FIG. 15 plots an example of an accelerometer-based
actigraphy signal (top plot), the body motion estimation by
local signal power from respiratory effort (middle plot) and
the body motion estimation signal after filtering by a median
removal filter (bottom plot).

With reference to FIG. 1, an ambulatory subject moni-
toring system includes one or more physiological sensors
10, each of which sense a physiological parameter other than
body movement (displacement, velocity, acceleration). For
example, the one or more physiological sensors 10 may
include one or more of the following sensors: an ECG
sensor; an inductance plethysmography sensor; a photopl-
ethysmography sensor; a ballistocardiography sensor; a
nasal pressure sensor; a thoracic impedance sensor; or so
forth. Each of the one or more physiological sensors 10 is
configured to measure a physiological process other than
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body movement. For example, the physiological sensors
may measure one or more of the following: cardiac activity;
thoracic respiratory effort; abdominal respiratory effort;
respiratory flow; or so forth. In the illustrative embodiment
the one or more physiological sensors 10 include an ECG
sensor, a respiratory sensor, or both.

With continuing reference to FIG. 1, the ambulatory
subject monitoring system further includes an electronic
data processing device 12, for example a microprocessor,
microcontroller, or the like, that is programmed to by
suitable software or firmware to acquire samples from the
one or more physiological sensors 10, store the acquired
sensor data in a sensor data storage 14 (for example, a flash
memory, magnetic disk or other magnetic memory, or so
forth), perform optional post-acquisition sensor data pro-
cessing 16 (i.e. digital signal processing, “DSP”) such as
computing ECG lead signals from electrode voltages, com-
puting heart rate (HR) from ECG data, computing respira-
tory rate (RR) from respiratory sensor data, or so forth, and
store the post-acquisition processed data (e.g. ECG signal
lead traces, HR, RR, et cetera) in a processed data storage 18
(for example, a flash memory, magnetic disk or other mag-
netic memory, or so forth; the data storages 14, 18 may
optionally comprise a single physical data storage element,
e.g. a single flash memory, configured to have logical
storage structures for the acquired sensor data and post-
acquisition processed data).

The electronic data processing device 12 is further pro-
grammed to by the software or firmware to implement an
actigraphy synthesis module 20, including performing a
Body Movement Artifact (BMA) versus time signal extrac-
tion process 22, performing a BMA signal to actigraphy
sensor signal process 24 (where the generated actigraphy
sensor signal is again a function of time), and performing
optional further processing such as illustrative median
removal filtering 26, high pass filtering 28, or so forth. The
resulting BMA signal is suitably stored in the processed data
storage 18.

The ambulatory subject monitoring system of FIG. 1 may
optionally include various other features not illustrated in
diagrammatic FIG. 1, such as a wired or wireless commu-
nication interface (e.g. a USB port, Bluetooth wireless
interface, et cetera), an on-board LCD or other display
component, buttons or other user interface features to enable
a user to perform configuration options such as inputting
subject identification, choosing parameters to measure (in
embodiments in which the one or more sensors 10 include
more than one sensor), choosing post-acquisition processing
options, et cetera.

The BMA versus time signal extraction process 22 may
use various processing to derive this signal, such as com-
puting the local signal power in the time domain, computing
the regularity of the signal in the time domain, computing
signal power in the time-frequency domain (for example by
means of a Wavelet Transform), computing local signal
power in the frequency domain (for example by means of
Discrete Fourier Transform), or so forth. The output of the
BMA versus time signal extraction process 22 is a BMA
signal versus time. In embodiments in which the process 22
employs frequency domain processing (e.g. local signal
power), this can be achieved by performing the frequency
domain processing over a small time window (also called an
“epoch” herein) which is of sufficiently short duration to
approximate a signal versus time. Said another way, the time
window or epoch affects the temporal resolution of the BMA
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versus time signal, and should be short enough that the
temporal resolution is high, e.g. a few minutes, a few tens of
seconds, or better.

In general, body movements can influence measured
physiological signals. Such influence can arise as a conse-
quence of mechanical limitations of sensing systems. For
example, when measuring an ECG, body movements will
cause the skin to deform, changing its capacitance and
impedance. ECG electrodes will sense these changes which
will result in artifacts corresponding to large amplitude
signals on the signal.

As another example, Respiratory Inductive Plethysmog-
raphy (RIP) is a method for measuring respiratory effort
(thoracic or abdominal). A RIP sensor suitably includes
elastic wires coated with conductive material, which are
sewn on elastic bands that are placed around the ribcage and
the abdomen. The cross-sectional area of these body parts
expands and contracts due to respiratory excursion, but also
due to body movements. The inductance of the conductive
elements of the RIP is proportional to the cross-sectional
area or the body part they enclose, and hence small and large
body movements will both result in artifacts in the measured
respiratory effort signal.

Due to the mechanical properties of these sensors, certain
properties of the artifacts are closely related to the intensity
or amplitude of the body movements. Typically, in the time
domain, a higher transitional signal power is observed in the
presence of large movements. In the frequency domain, the
presence of wide-band noise is observed, with an substantial
low-frequency component. Suitable signal processing is
employed by the BMA signal— actigraphy converter pro-
cess 24 quantifies these artifacts into a measure of body
movement.

In the following, some illustrative embodiments of the
BMA versus time signal extraction process 22 are described
in additional detail.

FIG. 2 illustrates an example of a simultaneously
recorded actigraphy, respiratory effort (thoracic) and ECG
signals, with an artifact. Note that the signals have different
sampling rates. The period of the actigraphy signal is 30
seconds. The peak in the actigraphy signal corresponds to a
body movement that took place within a 30-second interval
centered around the temporal location of that peak. This
body movement produced observable artifacts in the respi-
ratory effort and in the ECG signals as seen in the middle and
lower plots, respectively, of FIG. 2.

Body movement artifacts (BMA) in a physiological signal
typically have different time and frequency characteristics
than the expressions of physiological processes measured by
the different sensors 10. As such, these characteristics can be
exploited to distinguish artifacts from the physiological
signal being measured in process 22, and also to quantify
them as a measure of body movements using the processing
24. Some suitable embodiments of such processing are
described in the sequel. In general, the actigraphy signal is
derived by detecting artifacts in the sensor signal (process
22) and performing transformation processing 24 to generate
the actigraphy signal. The following illustrative examples
process a single sensor signal, but generalization to multiple
sensor signals is straightforward: for example, given a
multi-lead ECG signal, from every lead an actigraphy signal
is derived, and these signals are combined using suitable
data fusion techniques such as addition or averaging of the
signals.

In one illustrative example, the process 22 generates the
BMA signal versus time by computing local signal power.
This approach is based on the observation made herein that
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body movement artifacts generally increase the local signal
power. Intuitively, this can be understood as the body
movement introducing additional energy. Furthermore, it is
observed herein that the amplitude of these artifacts, and
thus, the signal power, is approximately related to the
amplitude or intensity of the body movements.

However, signal power is a frequency-domain quantity.
Treating the signal power as an actigraphy signal would
therefore lose temporal information; that is, while the mag-
nitude of movement could be assessed, its behavior as a
function of time is lost.

To overcome this limitation, it is disclosed herein to
compute the local signal power over time windows (also
called “epochs”) of a certain relatively short duration so as
to differentiate epochs in which BMAs are present from
epochs where they are absent while giving a measure of the
amplitude or intensity of the body movement for each epoch.
The local power of a signal x on an epoch i is given by:

M

where N is the number of samples in each epoch (the
window size). By keeping N small, good time resolution is
provided. This is at the cost that the signal power pli] is
made less accurate since it is based on only a few samples—
but the accuracy is sufficient to provide a reasonably repre-
sentative actigraphy signal versus time.

FIG. 3 illustrates an example of the computed local signal
power for a segment of a respiratory effort signal. For
reference, FIG. 3 also illustrates simultaneously measured
actigraphy measured using an accelerometer-based actigra-
phy sensor. As it can be seen in FIG. 3, the respiratory effort
signal has an artifact shortly after 01:37 minute, caused by
a body movement (also detected by the actigraphy signal).
The local signal power was computed for 30 second epochs
(indicated with dashed vertical bars) from the respiratory
effort signal. An increase in local signal power in the fourth
and fifth epochs reflect the presence of a BMA.

FIGS. 4(a) and 4(b) illustrate the local signal power
computed for two full night recordings. In the recording
shown in FIG. 4(a), the local signal power correlates well
with a simultaneously recorded actigraphy, with peaks on
the same time instances. Although the amplitude of the
peaks is somewhat different, it is clear that whenever there
is a peak of actigraphy, the local signal power also increases.

With reference to FIG. 4(5), a drawback of this technique
is illustrated: whenever the local signal power changes not
due to body movements, but rather, due to changes in the
sensing conditions (such as when the position of a subject
lying in bed changes, and the subject lies for some minutes
on top of an ECG electrode, or when the respiratory plethys-
mography belt stretches due to that position), the local signal
power might reflect also that situation. This is visible in FIG.
4(b): during several periods during the night (most notably
between around 1:00 and 2:00 and then around 5:00) the
amplitude of the respiratory effort is larger than in the rest
of the recording. Since this follows and precedes significant
BMAs, it is likely to have been caused by a change in the
lying position. This is reflected in the local signal power as
two “plateaus” which do not correspond to artifacts but
rather to this change in the amplitude of the signal. In some
embodiments, this problem may be overcome by the use of
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different BMA estimation techniques, or by means of post-
processing such as the filtering operations 26, 28.

In another illustrative embodiment, the BMA versus time
signal extraction process 22 employs local signal variance
processing. This approach is based on the observation made
herein that in the presence of BMAs, the variance of the
signal changes. Within epochs shorter than a few minutes,
most physiological signals vary between reasonably stable
minima and maxima. In the presence of BMAs, however, the
signal varies beyond these boundaries, increasing the local
signal variance significantly. The variance of a signal x on an
epoch i is given by:

+N-1

o . @
il = 5= Z (x[n] = (i)

where N is the number of samples in an epoch.

Note that for piece-wise stationary signals the local signal
variance is the same (apart a scaling factor

N—l)

as the local signal power described earlier.

With reference to FIG. 5, a short respiratory effort seg-
ment is illustrated along with simultaneously acquired accel-
erometer-based actigraphy and the local variance computed
using Expression (2). In the case of the short respiratory
effort segment illustrated in FIG. 5, the resulting local signal
variance is approximately the same as the local signal power
computed and illustrated in FIG. 3.

With reference to FIGS. 6 and 7, these techniques can be
used on other physiological measurements besides respira-
tory signals. FIG. 6 illustrates the computed local signal
variance on an ECG signal, while FIG. 7 illustrates the local
signal variance on a full night ECG recording.

In another illustrative embodiment, the BMA versus time
signal extraction process 22 employs discrete Short-Time
Fourier Transform (STFT) processing. This approach is
based on the observation that the frequency response of a
segment of a signal with a BMA is different than of a
segment without such artifacts. Computing the Discrete
Fourier Transform (DFT) on each of these segments allows
a differentiation between the two types of segments. Fur-
thermore, the Fourier coefficients obtained after this trans-
formation also relate to the power of the signal (more
precisely to the power of the signal for each frequency). For
that reason, they can be used to characterize (e.g. the
amplitude) of the body movements. The use of a Short-Time
DFT (e.g., computed over an epoch of duration of a few
minutes or less, and in some illustrative embodiments of 1
minute or less, advantageously provides the desired time
resolution to generate the BMA versus time signal with
suitably fine temporal resolution.

The Short-time Fourier Transform (STFT) can be
obtained by computing the DFT of the signal for each epoch
according to:
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(3)
X[, w]=

where W is a window function which is zero-valued outside
of the chosen epoch. A Hamming function, i.e.

n
Wln] = 0.54 - 0.46 cos (Znﬁ),

O=n=N, or otherwise-shaped window may used to reduce
spectral leakage when calculating the DFT. Taking the
squared magnitude of the DFT, the spectral density of the
signal is obtained for that epoch:

S[i,0]=IXT;,0]? @

With reference to FIG. 8, a spectrogram representation of
a segment of a respiratory effort signal with a BMA is
illustrated, along with simultaneously acquired accelerom-
eter-based actigraphy. The spectrogram was computed with
DFT using a Hamming window of 60 seconds, with overlaps
of 30 seconds. The average breathing frequency on the first
3 epochs is clearly visible (with a peak around 0.2 Hz, or 12
breaths per minute). The BMA in epoch 4 and 5 significantly
change the power spectral density (PSD) for those epochs,
with a strong low frequency component. In this example,
before computing the STFT, the DC component was
removed from the signal by mean subtraction.

FIG. 9 illustrates the spectrogram of a respiratory effort
signal for a full night recording, together with a simultane-
ously recorded accelerometer-based actigraphy signal. More
particularly, FIG. 9 plots the log-spectrogram representation
of the respiratory effort signal for a full-night recording
(Hamming window of 60 seconds, 30-second overlap).
Peaks of activity lead to wide-band increases of spectral
power. This shows that the STFT coefficients can be used for
detecting and quantizing BMAs.

Although the STFT can detect and quantize BMAs, it has
certain performance limitations. The power of each fre-
quency is obtained with a sinusoidal base function, whereas
neither the artifacts nor the underlying physiological signals
have such a shape. The STFT also has limited resolution, as
the width of the epochs (or the windowing function) implic-
itly determines the frequency resolution. A wider window
allows for a better frequency resolution but a poorer time
resolution and vice versa.

In another illustrative embodiment, the BMA versus time
signal extraction process 22 employs wavelet transform
processing. Wavelets have been used as a multi-resolution
analysis tool for ECG (see Addison, “Wavelet transforms
and the ECG: a review”, Physiological measurement, vol.
26, 2005) and for noise and artifact reduction in ECG signals
(see Singh et al., “Optimal selection of wavelet basis func-
tion applied to ECG signal de-noising”, Digital Signal
Processing, vol. 16, pp. 275-287, 2006). The continuous
wavelet transform of a (continuous) signal x(t) is given by:

1 i t-b [©)]
Watar )= 0, poatt) = = [ oy (27 e
a J-co

where a is a scale factor, b is a translation factor, and {*(t)
is the complex conjugate of the mother (wavelet) function.
When the mother function can be evaluated at different
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scales, for different translations, at discrete points, then the
continuous wavelet transform (CWT) of a discrete signal is
given by:

=

= ©

Wyla, il = sty =

1
Va £

a

i
=3

where N is the the number of samples in the signal (or
window of interest) and m is an integer time translation,
meZ . See Popov et al., “Computation of continuous wavelet
transform of discrete signals with adapted mother func-
tions”, Proc. of SPIE, vol. 7502, 2009.

A widely used family of wavelet functions is the so-called
“Daubechies” family (db), which has been applied in noise-
and artifact-reduction problems such as 4 coefficient-db (see
Pinheiro et al., “Stationary wavelet transform and principal
component analysis application on capacitive electrocardi-
ography”, International Conference on Signals and Elec-
tronic Systems (ICSES) 2010, pp. 37-40, 2010) and 8
coeflicient-db (see Singh et al., “Optimal selection of wave-
let basis function applied to ECG signal de-noising”, Digital
Signal Processing, vol. 16, pp. 275-287, 2006).

FIG. 10 illustrates a so-called “scalogram” which illus-
trates the CWT values obtained with a db4 wavelet on 128
scales for each sample of a respiratory effort signal segment
with a BMA. It is clear that the artifact causes a mid- to
high-scale CWT response. The BMA leads to higher CWT
values, especially in mid- and high-scales.

With reference to FIG. 11, since the CWT is computed for
each sample in the original signal and characterization of the
BMA over an entire epoch is of interest, statistics can be
used to obtain one or a few values per scale, per epoch. FIG.
11 illustrates the values obtained after taking the maximum
CWT value for each scale within the boundaries of each
epoch (where each epoch is delineated with dashed vertical
lines in the respiratory effort plot). FIG. 11 clearly shows
higher values over the mid-high-scales in the epochs with
the BMA.

FIG. 12 illustrates CWT-based BMA versus time signal
extraction results for a whole-night recording. The acceler-
ometer-based actigraphy signal is again plotted for refer-
ence. As it can be clearly seen, instances that correspond to
a peak in the actigraphy signal lead to an increase in the
CWT coefficients, especially for mid- and high-scales.

Other approaches for performing the processing 22 are
contemplated, such as approaches that exploit signal regu-
larity to quantify artifacts in the signal. An example of such
a technique is Dynamic Time Warping [5, 6]. See Sakoe et
al., “Dynamic programming algorithm optimization for spo-
ken word recognition”, IEEE Transactions on Acoustics,
Speech and Signal Processing, 26(1) pp. 43-49, 1978, ISSN:
0096-3518; Myers et al., “A comparative study of several
dynamic time-warping algorithms for connected word rec-
ognition”, The Bell System Technical Journal, 60(7):1389-
1409, September 1981.

With returning reference to FIG. 1, after the processing 22
generates the Body Movement Artifact (BMA) versus time
signal, the processing 24 processes the BMA-versus-time
signal to generate an actigraphy signal versus time. In the
case of local signal variance, local signal power or other
one-dimensional measure of BMAs, a body movement
estimate (BME) can be obtained by suitably scaling and
translating that signal according to:

e[i]=ax[i]+b @]
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where x is a signal resulting from the quantification of
BMAs for each epoch i, and a and b are the scaling and
translation factors, respectively. These factors can be
obtained, for instance, by linear regression minimization of
a given criteria in respect to a reference measure of body
movements (e.g. obtained by simultaneous recording of
accelerometer-based actigraphy).

In the case of M-dimensional quantifications of BMA
(with M>1), a similar procedure can be used:

e[i]=ax[il+b (®)

where in this case x[i] is an Mx1 signal representing the
quantification of BMAs for an interval starting at i, a is a
1xM scaling vector, and b is a translation factor or offset.
Parameters a and b can be estimated by multivariate linear
regression, minimizing a certain criteria in respect to a
reference measure of body movements.

As an example, consider the ‘Max CWT per epoch’
measure, which can be used to obtain scale values for each
epoch, with these scale values (especially for medium and
higher scales) having a higher value in the presence of
BMAs. Using a set of coefficients obtained after linear
regression between the maximum CWT coefficients for a set
of full night recordings, and a reference accelerometer-based
actigraphy signal, the body movement estimates illustrated
in FIG. 13 and FIG. 14 are obtained. FIG. 13 plots the
accelerometer-based actigraphy signal (top plot), the respi-
ratory effort signal with a BMA (middle plot) and body
movement estimation obtained with the Maximum CWT
coeflicients for each epoch (bottom plot). FIG. 14 plots the
accelerometer-based actigraphy signal (top plot) and the
body movement estimation (bottom plot) for a full night
recording.

Apart from some low-amplitude noise, the BME is seen
in these illustrative examples to correlate well with the
reference accelerometer-based actigraphy signal, not only in
terms of the temporal location of activity peaks, but also in
terms of their amplitude which indicates the intensity and
duration of body movements.

In an alternative approach for the processing 24, non-
linear regressions can be used in order to estimate body
movements. This is expected to be especially suitable in the
multivariate case, where an M-dimensional space (M>1) is
used to quantify the artifacts and where the relations
between the dimensions of this space are non-linear (e.g. if
one dimension exhibits an exponential variation with the
intensity of the artifact—and therefore the body movement).
As another contemplated alternative, one can directly clas-
sify the quantified artifacts in categorical classes which
describe, qualitatively, the type of body movements. In this
case, a conventional classifier can be used for that purpose.

With returning reference to FIG. 1, the actigraphy versus
time signal generated by the processing 24 is optionally
post-processed, for example by the illustrative filters 26, 28.
Such post-processing can improve the body movement
estimates. A filter can be used, for an example, to reduce the
negative impact of the local signal power variations due to
the mechanical constraints of the sensors used. Take for
instance the local signal power estimated from the respira-
tory effort signal illustrated in FIG. 4(b). Variations in local
signal power can be due to body movements (resulting in
short peaks), but can also be due to changes in the lying
position causing the amplitude of (in this case) the respira-
tory effort signal to increase considerably for a rather long
interval (several minutes). The illustrative median removal
filter 26 can be used to remove these “plateaus”, leaving the
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short peaks intact. For each epoch i the filtered body motion
estimation signal e, is given by:

efi]=e[i]-median{e[i-F], . . ., e[i+F]} 9)
where F is half of the window size used for to compute the
median.

FIG. 15 illustrates the effect of the median removal filter
26 on the local signal power illustrated in FIG. 4(5). FIG. 15
plots the accelerometer-based actigraphy signal (top plot),
the body motion estimation by local signal power from
respiratory effort (middle plot) and the body motion estima-
tion signal after filtering by the median removal filter 26
(bottom plot). As it can be seen in FIG. 15, the “plateaus”
caused by changes in the local signal power are almost
completely removed, the only remaining component in those
periods being a low-amplitude, high-frequency noise.

Additionally or alternatively, the high pass filter 28 can be
used to remove the low frequency variation due to the local
power variations while preserving the sharp, short peaks that
correspond to body movements.

The illustrative examples are used to obtain the movement
signal, but another use is that the movement signals are
derived and then the original signals are enhanced using this
movement signal. In its simplest embodiment the movement
signal is used as an indication that the original biophysical
signal is unreliable.

The disclosed actigraphy techniques are suitably
employed in monitoring devices or situations in which
measuring “real” actigraphy (e.g. with Actiwatch or another
accelerometer-based actigraphy device) is not possible, or
convenient. For example, the disclosed approaches can be
used in conjunction with Holter Monitors.

The disclosed actigraphy techniques can be used to evalu-
ate sleep (sleep/wake detection can be done reasonably well
with actigraphy), or to measure the response/recovery of the
heart to intense or prolonged periods of movement (typically
corresponding to exercise or other sorts of activity).

The disclosed actigraphy techniques can be used to esti-
mate actigraphy for sleep diagnostics devices such as the
Stardust II Sleep Recorder (available from Koninklijke
Philips N. V., Eindhoven, the Netherlands) which records
respiratory effort. Such a device can be readily modified to
incorporate the actigraphy synthesis module 20 so as to
provide an additional modality (actigraphy) without the need
to add a new sensor or modify the recording hardware (if the
actigraphy synthesis module 20 is implemented off-device,
for example in analysis software operating on data down-
loaded from the sleep recorder.

The disclosed actigraphy techniques can be used to esti-
mate actigraphy for screening devices which typically com-
prise one or two modalities, such as the Philips RUSleeping
RTS Screener (available from Koninklijke Philips N. V.,
Eindhoven, the Netherlands). Again, the actigraphy synthe-
sis module 20 provides an additional modality without
having to modify the hardware in order to add an additional
sensor. Again, the actigraphy synthesis module 20 is option-
ally implemented off-device, for example in analysis soft-
ware operating on downloaded data.

More generally, the disclosed actigraphy techniques can
be used in the fields of monitoring and biosignal analysis,
where having an additional actigraphy sensor is undesirably
expensive (e.g., requiring the modification of the hardware
of a sensor in order to add an accelerometer, and additional
data logging capacity) or inconvenient (e.g., activity esti-
mation typically requires a wrist-worn device, which has to
be worn by the user in addition to whatever other sensors are
used for monitoring purposes).
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It will also be appreciated that the actigraphy synthesis
module 20 may be physically embodied as a non-transitory
storage medium storing instructions that are readable and
executable by an electronic data processing device (e.g. a
microprocessor, microcontroller, computer, et cetera) to per-
form the disclosed operations, e.g. operations 22, 24 option-
ally along with operations 26 and/or 28. The non-transitory
storage medium may, for example comprise a flash memory,
a read-only memory (ROM), programmable read-only
memory (PROM), a hard disk drive or other magnetic
storage medium, an optical disk or other optical storage
medium, various combinations thereof, or so forth.
The invention has been described with reference to the
preferred embodiments. Modifications and alterations may
occur to others upon reading and understanding the preced-
ing detailed description. It is intended that the invention be
construed as including all such modifications and alterations
insofar as they come within the scope of the appended
claims or the equivalents thereof.
The invention claimed is:
1. A physiological monitoring device comprising:
a sensor configured to generate a non-body motion physi-
ological parameter signal as a function of time for a
physiological parameter other than velocity, displace-
ment, and acceleration; and
an electronic digital signal processing (DSP) device con-
figured to perform operations including:
computing a body motion artifact (BMA) signal as a
function of time from the non-body motion physi-
ological parameter signal, and

computing an actigraphy signal as a function of time
from the BMA signal.

2. The physiological monitoring device of claim 1
wherein the sensor includes an electrocardiography (ECG)
sensor and the physiological parameter includes one or more
of (i) at least one ECG trace and (ii) a heart rate.

3. The physiological monitoring device of claim 1
wherein the sensor includes a respiratory sensor and the
physiological parameter includes a respiration rate.

4. The physiological monitoring device of claim 1
wherein the sensor includes a Respiratory Inductive Plethys-
mography (RIP) sensor.

5. The physiological monitoring device of claim 1
wherein computing a BMA signal as a function of time from
the non-body motion physiological parameter signal com-
prises computing a local signal power signal from the
non-body motion physiological parameter signal.

6. The physiological monitoring device of claim 1
wherein computing a BMA signal as a function of time from
the non-body motion physiological parameter signal com-
prises computing a local signal variance signal from the
non-body motion physiological parameter signal.

7. The physiological monitoring device of claim 1
wherein computing a BMA signal as a function of time from
the non-body motion physiological parameter signal com-
prises computing a Short-Time Fourier Transform (STFT)
signal from the non-body motion physiological parameter
signal.

8. The physiological monitoring device of claim 1
wherein computing a BMA signal as a function of time from
the non-body motion physiological parameter signal com-
prises computing a wavelet transform signal from the non-
body motion physiological parameter signal.

9. The physiological monitoring device of claim 1
wherein computing a BMA signal as a function of time from
the non-body motion physiological parameter signal com-
prises computing a BMA signal sample for each time
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window of a succession of time windows of the non-body
motion physiological parameter signal.

10. The physiological monitoring device of claim 9
wherein the succession of time windows is a succession of
overlapping Hamming time windows.

11. The physiological monitoring device of claim 1
wherein computing an actigraphy signal as a function of
time from the BMA signal comprises applying a linear
transform to the BMA signal.

12. The physiological monitoring device of claim 1
wherein the DSP device is configured to perform further
operations including:

filtering the actigraphy signal using a median removal

filter.

13. The physiological monitoring device of claim 1
wherein the DSP device is configured to perform further
operations including:

filtering the actigraphy signal using a high pass filter.

14. A non-transitory storage medium storing instructions
readable and executable by an electronic data processing
device to perform a physiological monitoring method com-
prising:

computing a body motion artifact (BMA) signal compris-

ing one of a local signal power signal, a local signal
variance signal, a Short-Time Fourier Transform
(STFT) signal, and a wavelet transform signal as a
function of time from a non-body motion physiological
parameter signal as a function of time for a physiologi-
cal parameter other than displacement, acceleration,
and velocity wherein a BMA signal sample is computed
for each time window of a succession of time windows;
and

computing an actigraphy signal as a function of time from

the BMA signal.
15. The non-transitory storage medium of claim 14,
wherein the operation of computing a BMA signal as a
function of time from the non-body motion physiological
parameter signal comprises one of:
computing a local signal variance signal from the non-
body motion physiological parameter signal;

computing a Short-Time Fourier Transform (STFT) signal
from the non-body motion physiological parameter
signal; and

computing a wavelet transform signal from the non-body

motion physiological parameter signal.

16. The non-transitory storage medium of claim 14,
wherein the operation of computing a BMA signal as a
function of time from the non-body motion physiological
parameter signal comprises computing a BMA signal sample
for each time window of a succession of time windows of
the non-body motion physiological parameter signal.

17. The non-transitory storage medium of claim 14,
wherein the instructions further include:

filtering the actigraphy signal using a median removal

filter or a high pass filter, wherein the filtering operation
is performed by the electronic data processing device.

18. A physiological monitoring device comprising:

at least one of an electrocardiography (ECG) sensor and

a respiratory sensor configured generate a non-body
motion physiological parameter signal as a function of
time, the physiological parameter signal including at
least one of a heart rate signal, at least one ECG trace
signal, and a respiration rate signal; and

at least one processor programmed to:

compute a body motion artifact (BMA) signal as a
function of time from the non-body motion physi-
ological parameter signal;
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applying a linear transform to the BMA signal;
compute an actigraphy signal as a function of time from
the applied linear transform BMA signal.
19. The device of claim 18, wherein the at least one
processor is programmed to compute the BMA signal as a
function of time from the non-body motion physiological
parameter signal by one of:
computing a local signal variance signal from the non-
body motion physiological parameter signal;

computing a Short-Time Fourier Transform (STFT) signal
from the non-body motion physiological parameter
signal; and

computing a wavelet transform signal from the non-body

motion physiological parameter signal.

20. The device of claim 18, wherein the at least one
processor is programmed to compute the BMA signal as a
function of time from the non-body motion physiological
parameter signal by:

computing a BMA signal sample for each time window of

a succession of time windows of the non-body motion
physiological parameter signal.
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