Overview of Photoplethysmography (PPG) related papers produced by TU/e-SPS’ chair on Ambulatory Monitoring

Ronald M. Aarts

June 15 2020

Abstract

An inverse chronological list of all Photoplethysmography (PPG) related papers produced by TU/e-SPS’ chair on Ambulatory Monitoring spanning the period 2020–2010 is given. The topics are mainly on sleep monitoring, atrial fibrillation detection, epilepsy detection, blood pressure measurement, cardiopulmonary resuscitation (CPR), and PPG artefact reduction.

1 Introduction

Most, if not all, mentioned papers below are available at: https://www.sps.tue.nl/rmaarts/

In biomedical engineering Photoplethysmography (PPG) is an important topic. It is a simple and low-cost optical technique that can be used to detect blood volume changes in the microvascular bed of tissue. PPG is ubiquitous in clinical setting, but fast growing outside the clinic where it used by athletes to measure heart rate, since the PPG-sensor is build into smart watches. Further it is in use for sleep monitoring, atrial fibrillation detection [2, 1, 3, 4, 8, 9, 11, 12, 14, 15, 20, 21, 24, 28], epilepsy detection [31], blood pressure measurement [7, 13, 17, 26, 27], and cardiopulmonary resuscitation (CPR) [29, 32, 33, 34, 36, 37]. PPG signals are sensitive to movement artefacts. Algorithms to reduce those artefacts are discussed in [16, 25, 39, 40, 41, 42, 43, 44]. We present the following inverse chronological list of all Photoplethysmography (PPG) related papers produced by TU/e-SPS’ chair on Ambulatory Monitoring spanning the period 2020–2010.

References

[1] Linda M. Eerikäinen. Cardiac arrhythmia monitoring from clinical setting to daily life. PhD Thesis at Eindhoven University of Technology; Wednes-
day 14 October 2020, with supervisors Prof. dr. Ronald M. Aarts and Prof. dr. L. Dekker.


[18] Pedro Fonseca, Tim Weysen, Maaike Goelmea, Els Most, Mustafa Radha, Charlotte Lunsingh Scheurleer, Leonie van den Heuvel, and Ronald M.


[35] Roxana Alexandra Cernat, Constantin Ungureanu, Mihaela Ungureanu, Ronald M. Aarts, and Johan Arends. Real-time extraction of the respiratory rate from photoplethysmographic signal using wearable devices. *Workshop on Smart Healthcare and Healing Environments in conjunction with*


