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ABSTRACT

In this paper, we concentrate on the per-class accuracy of
neural network-based classification in the context of identi-
fying acoustic environments. Even a fully supervised learn-
ing framework with an equal amount of data for each class
can lead to significant differences in class accuracies. This
is then amplified by semi-supervised learning using naturally
imbalanced data. To address this problem, we propose an
adaptive method for pseudo-label selection via a straightfor-
ward optimization of the validation accuracy per class, aimed
specifically at reducing the variance between different classes.
The proposed method is general and can be applied for both
maximum probability and entropy-based confidence criteria.
Compared to fully supervised learning as well as state-of-the-
art methods for pseudo-labeling, it achieves the lowest vari-
ances of per-class accuracy and the highest accuracies of the
minority classes when tested on common publicly available
environment sound databases.

Index Terms— Semi-supervised learning, deep learning,
neural networks, pseudo-labeling, sound classification

1. INTRODUCTION

Research on machine learning for audio processing has drawn
growing attention in recent years [1, 2, 3]. Such techniques
allowed for more powerful denoising and dereverberation
methods [4, 5], as well as beamforming [6]. Especially for
sound classification, feedforward, recurrent, and convolu-
tional neural networks represent the most used structures [7].
Recently, environmental sound classification using machine
learning had become relevant for medical applications such
as hearing aids [8, 9], avoiding the amplification of ambi-
ent noises, making up for better speech comprehension and
overall listening experience.

For sound classification tasks, labeled data is usually
scarce and the labeling process can be time-consuming and
expensive, which is especially critical when creating larger
datasets [10]. Unlabeled data is also easier to collect, e.g., on
a device [11]. In these situations, semi-supervised learning
(SSL) [12] can be applied, which aims to use both labeled and

unlabeled data during training. The lowest complexity SSL
method is known as pseudo-labeling [13] and is of particular
interest for applications in power-constrained devices.

However, unlabeled data is often imbalanced, causing
strong biases in the neural network model [14]. For pseudo-
labeling, some approaches have tried to compensate for im-
balanced data by using adaptive probability thresholding [15],
where, though, a strong dependence on data in the majority
class is still maintained. Others tried to achieve a better
classification by using the entropy of the network’s softmax
output [16], but not considering per-class adaptability.

In this paper, we focus on SSL for environmental sound
classification. We propose a low-complexity adaptive frame-
work of defining per-class confidence scores where each class
is independently treated according to a specified metric. We
show that this approach can be applied to both probability
and entropy-guided implementations of pseudo-labeling. It
achieves better class balance and higher accuracy as well as
F1 score for the minority classes when compared to other
available methods.

2. SEMI-SUPERVISED LEARNING FRAMEWORK
WITH ADAPTIVE CONFIDENCE SCORES

In the supervised learning problem, the data used for train-
ing is composed of input and desired (labeled) output, while
for unsupervised learning, no information about the desired
output is available. The semi-supervised learning framework
combines the two cases [12]. Here we focus on pseudo-
labeling, the most elementary SSL method.

2.1. Pseudo-labeling

Pseudo-labeling [13] uses the prediction of an iteratively up-
dated model for the classes of unlabeled data, which, com-
bined with a small labeled dataset, can be used for (semi)
supervised optimization. During the optimization, the loss
function, which is minimized by gradient descent, is given by
L = (1−α)LL+αLU , where α is a weighting factor between
labeled (LL) and unlabeled (LU ) losses. The labeled data loss
is defined as LL = 1

n

∑n
m=1

∑C
i=1 ℓ(y

m
i , fm

i ), with ℓ(·) be-IC
A

SS
P 

20
23

 - 
20

23
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

8-
1-

72
81

-6
32

7-
7/

23
/$

31
.0

0 
©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

93
57

.2
02

3.
10

09
72

38

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 25,2023 at 11:35:30 UTC from IEEE Xplore.  Restrictions apply. 



ing the cross-entropy loss function. Here, C is the number of
classes, fm

i the network’s probability output at the i-th class,
i ∈ {1, ..., C}, for the m-th data sample, m ∈ {1, ..., n},
with one-hot encoded label ymi , for n labeled data examples.
Similarly, for the unlabeled part of the data, the loss func-
tion is LU = 1

n′

∑n′

m=1

∑C
i=1 ℓ(y

′m
i , f ′m

i ), where y′ are the
pseudo-labels and the apostrophe indicates that the variables
are related to the unlabeled dataset.

The probability output of the neural network model is typ-
ically combined with a fixed probability threshold µ to deter-
mine the class of the unlabeled feature - the pseudo-label. In
this sense, (one-hot) pseudo-labels for an unlabeled input fea-
ture xm are chosen as

y′
m
i =

{
1, if i = argmax(f ′m) ∧ f ′m

i > µ,

0, otherwise,
(1)

where f ′m is the softmax output of the network.
An alternative for a fixed value µ is to use a cosine-

scheduled threshold as proposed in [11]. This allows starting
at a lower confidence value that increases slowly, according
to the number of epochs, thus gradually providing pseudo-
labels with higher confidence. A more sophisticated method
based on adaptation to the amount of data in the majority
class has been proposed in [15], which is a state-of-the-art
adaptive-threshold method and we briefly discuss it next.

2.2. Adaptive probability threshold

Imbalanced class distribution in the training data can cause
strong performance differences from class to class in machine
learning models [17]. In the case of SSL, the bias generated
by the class imbalance will degrade the pseudo-label predic-
tions by biasing them toward the majority class [15].

Adaptive (probability) thresholding (Adsh) [15] is a re-
cently proposed method that selects pseudo-labels based on
the majority class, where a class-wise threshold si is consid-
ered. A larger si means that more pseudo-labels are selected
for class i. C vectors P i with i ∈ {1, ..., C}, where C is
the number of classes, are defined containing the probability
of the pseudo-labels in descending order, with the classes or-
dered from majority (i = 1) to minority (i = C) class. The
amount of pseudo-labels m in the majority class that satis-
fies P 1(m) > τ1, for m ∈ {1, ..., length(P 1)} is defined
as len. Here τ1 is a hyper-parameter - the minimum desired
confidence for the selected pseudo-labels of the majority class
(set to 0.96 as in [15]). Once len is obtained, a ratio ρ can be
defined as ρ = len/length(P 1), which is used for the adap-
tive confidence threshold si = P i(length(P i) · ρ), for i ∈
{1, ..., C}. Thus, (1) becomes

y′
m
i =

{
1, if argmax(f ′m) = i ∧ f ′m

i > si,

0, otherwise.
(2)

It is important to note that the Adsh method tries to adapt
the per-class threshold with respect to the amount of data in

the majority class that satisfies the confidence criteria. This is
different from the methods proposed in this paper, described
in Subsections 3.1 and 3.2, which treat the threshold opti-
mization for each class separately.

2.3. Entropy-guided pseudo-labeling

The selection of pseudo-labels with a probability threshold
only takes into account the softmax score of the class with
highest probability. This method does not consider a confi-
dence measure in the other classes. It has been shown that
when the predicted probabilities for all classes are used, the
classification performance can increase in certain scenar-
ios [16]. For this reason, we also consider entropy-guided
pseudo-labeling (ESL) in our investigation. The pseudo-
labels are then obtained as

y′
m
i =

{
1, if argmax(f ′m) = i ∧ E(f ′m) < vi,

0, otherwise,
(3)

with vi being the entropy threshold for class i. The en-
tropy of the network’s output probability E(f ′m) is de-
fined as E(f ′m) = − 1

logC

∑C
i=1 f

′m
i log f ′m

i [16]. The
authors of [16] propose to use the entropy threshold as
vi = max(v∗,median{E(f ′)i}), where E(f ′)i is the vector
of entropies E(f ′m) for all features m assigned to class i and
v∗ is a hyper-parameter such that all samples with an entropy
score lower than v∗ will be selected.

Note that here the entropy threshold is not adapted per
class. For this reason, in the current manuscript an adap-
tive thresholding rule, applied to both probability and entropy
confidence criteria, is proposed to reduce the difference be-
tween the model accuracies for different classes.

3. PROPOSED ADAPTIVE CONFIDENCE SCORES

To showcase our proposed method from a more theoretical
point of view, we first concentrate on two training classes
(majority and another) from the imbalanced Ambient Acous-
tic Context (AAC) dataset [19]. Figure 1 shows the proba-
bility mass function (PMF) of the (top) maximum probability
score and (bottom) entropy obtained at the output of the clas-
sifier. Many high probability/low entropy values for the ma-
jority class are observed, unlike for the other class. The data
whose probability/entropy score is above/below a threshold is
selected for model optimization by pseudo-labeling. For the
entropy case, the selection process can be described by the
cumulative distribution function (CDF) FX(x) = Pr[X ≤
x] =

∑
xi∈X≤x Pr[X = xi], where x is the threshold en-

tropy. All data with a score below x is pseudo-labeled. By
setting the threshold x = tmaj for both classes, we have
Fmaj
X (x = tmaj) > F other

X (x = tmaj). As a result, the
number of pseudo-labels will be further biased toward the
majority class. Therefore, to mitigate such an effect, our pro-
posed pseudo-labeling process aims to ensure that tmaj and
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toth for the different classes are chosen such that Fmaj
X (x =

tmaj) ≈ F other
X (x = toth). Using the complementary CDF,

the same reasoning can be applied for the maximum probabil-
ity scoring. As a consequence, our per-class adaptive thresh-
olding might be beneficial when applied to the selection of
pseudo-labels, as it avoids the introduction of further bias to-
ward over-represented classes in the training data.
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Fig. 1: Normalized occurrence of confidence scores for the
majority and another class from the AAC dataset.

3.1. Entropy-based

Our entropy-based adaptive learning (EAD) uses individual
credibility criteria for each class for determining pseudo-
labels from unlabeled features. For this purpose, an addi-
tional optimization of the per-class threshold is performed,
aimed at reducing the variance of the validation accuracies.

The pseudo-labels are obtained as in (3), but for this
case, the threshold for class i at epoch k is defined as
vki = percentile(E(f ′)ki , p

k
i ), where pi is the p-th percentile

and E(f ′)ki is ordered from the lowest to the highest value
of entropy. The optimization of the percentile is key to the
method and is given as follows. For each class i, the valida-
tion accuracy values λi are saved on an epoch basis, until a
window size w is reached, as λk

i = [λ1
i , λ2

i , ..., λw
i ]. The

average value of λk
i , denoted λ̄i

k, is compared to the average
value λ̄i

k+1 of the next window λk+1
i = [λ2

i , λ
3
i , ..., λ

w+1
i ].

The percentile used to define the entropy threshold in vki
is initialized at 100% (the maximum value), i.e., taking the
highest entropy value as the threshold. This results in ob-
taining pseudo-labels for all samples in (3). The percentile is
updated per-epoch as

pk+1
i =


pki − η, if λ̄i

k+1
> λ̄i

k
,

pki + η, if λ̄i
k+1

< λ̄i
k
,

pki , otherwise,

(4)

where η is the update step, which is a manually tuned hyper-
parameter. In (4), if the class accuracy increases, the per-
centile decreases, taking into account only the lower-entropy

(higher-confidence) samples, and vice-versa. This reduces the
bias toward the majority class since under-represented classes
will be able to utilize more samples, while majority classes
will have their amount of selected pseudo-labels reduced.

3.2. Probability-based

Alternatively to EAD, we also propose the probability-
based adaptive learning (PAD) method. Here the pseudo-
labels are chosen as in (2) and the threshold is defined as
ski = percentile(Mk

i , p
k
i ), where Mk

i = max(f ′)ki is a
vector of maximum (softmax) probabilities of the network’s
output for input features assigned to class i at epoch k, or-
dered from the lowest to the highest value. The percentile
update for PAD is

pk+1
i =


pki + η, if λ̄i

k+1
> λ̄i

k
,

pki − η, if λ̄i
k+1

< λ̄i
k
,

pki , otherwise,

(5)

which is initialized at 0% (the minimum value), i.e., picking
the lowest value of probability as threshold and, thus, select-
ing all pseudo-labels in (2). If the class accuracy increases in
(5), the percentile will also increase, reducing the number of
selected pseudo-labels for that class, and vice-versa, for the
reduction of the bias toward the majority class.

4. NUMERICAL EXPERIMENTS

We consider two datasets of environmental sounds: Urban
Sound 8K (US8K) [18], with the recommended 10-fold cross-
validation, where three of the classes are under-represented;
and AAC, where we use the same classes as in [11], which are
also imbalanced. Since the US8K dataset has more samples
per class, we considered a labeled partition of 1% of the total
number of samples, while for the AAC, this was 3%.

For scenario 1 (US8K) and scenario 2 (AAC), we balance
the labeled part of the data and leave the unlabeled part im-
balanced. For an extreme case - scenario 3 (AAC) - we leave
the labeled part imbalanced while forcing a strong imbalance
on the unlabeled part of the data, done according to [15]:
n′

i = n′
1γ

− i−1
C−1 , with imbalance ratio γ = 200, where n′

i

is the number of unlabeled elements assigned to class i.
The model architecture is the same as in [11], a convolu-

tional neural network consisting of four blocks, each with two
separate convolutions - on temporal and frequency domains.
At each layer, L2 regularization is applied with a rate of 10−4.
Max-pooling and spatial dropout rate of 0.1 are used between
blocks to reduce the dimension size and avoid over-fitting.
ReLU is used in the hidden layers. The model is optimized
by the Adam algorithm, with a 10−3 learning rate. Cross-
entropy is used as the loss function. The model input is a log-
Mel spectrogram of the audio file with a window size of 2048
samples, a hop of 512, extracting 64 Mel-spaced frequency
bins for each window.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 25,2023 at 11:35:30 UTC from IEEE Xplore.  Restrictions apply. 



Table 1: Average over 10 independent runs of: validation accuracy (Avg.); variance of validation accuracy (Var.); maximum
(Max.) and minimum (Min.) accuracy (class-wise); and minimum F1 score per class (F1); for Scenarios 1, 2, and 3 (in %).

Scenario 1 Scenario 2 Scenario 3
Avg. Var. Max. Min. Avg. Var. Max. Min. F1 Avg. Var. Max. Min. F1

Sup 45.46 4.48 87.48 29.30 44.38 2.71 60.00 14.86 — 39.21 3.96 76.42 16.67 —
F05 47.55 5.39 80.44 35.45 45.41 2.65 62.72 14.19 0.2160 37.75 4.90 84.21 11.67 0.0526
F06 47.76 5.32 82.45 31.36 44.93 2.87 62.03 10.95 0.2133 39.66 4.61 84.21 15.27 0.3226
F07 46.45 6.35 86.90 27.00 46.50 2.87 63.29 12.43 0.2352 37.99 4.87 83.46 13.33 0.1600
F08 48.47 4.98 86.85 27.30 45.94 3.19 64.75 11.08 0.1953 39.48 4.56 81.04 10.56 0.0909
F09 47.51 4.94 82.67 32.42 43.76 3.44 67.58 12.03 0.2215 38.87 4.57 83.42 13.65 0.3083
Cos 48.20 5.17 84.76 30.50 44.59 3.03 64.55 13.24 0.2364 38.83 4.76 81.79 13.61 0.3623

Adsh 46.85 5.44 84.28 25.10 45.85 2.80 67.11 12.70 0.2419 39.35 3.66 74.38 13.89 0.3000
ESL 47.33 5.10 83.81 32.60 45.60 2.54 64.30 16.22 0.2697 39.60 4.41 81.63 13.78 0.2857
PAD 47.02 4.13 80.81 33.30 45.10 2.11 59.70 16.49 0.4384 39.65 3.16 68.37 16.11 0.4297
EAD 46.60 4.08 82.10 36.60 42.35 1.76 56.06 25.14 0.3792 40.80 3.52 69.17 20.56 0.4170

4.1. Fully supervised learning with balanced data

To show that discrepancies between class accuracies can be
present even when the data is balanced, we applied supervised
learning for training the model described in Section 4 for 200
epochs averaged over 10 independent runs, with the US8K
dataset considering only the full classes. Figure 2 shows the
normalized occurrence and the validation accuracy per class.
It can be seen that the accuracies differ, even though the num-
ber of samples is approximately the same.
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Fig. 2: Normalized occurrence (% over largest class) of the
US8K dataset and validation accuracy for fully supervised
training, averaged over 10 independent runs.

4.2. Semi-supervised learning

The results are obtained by applying the learning frameworks
described in Section 2 and 3 - supervised (Sup), fixed thresh-
old of 50-90% (F05-F09), cosine-scheduled threshold (Cos),
adaptive thresholding (Adsh), entropy-guided learning (ESL),
probability-based adaptive learning (PAD) and entropy-based
adaptive learning (EAD) - for the scenarios described earlier
in this section. 200 epochs of training are performed for all
cases, where the first 50 are only supervised training.

Our tests showed that η, from (4) and (5), should be mono-
tonically lowered as the training progresses, initially allowing
for better exploration on the percentile and later acting as a
finer adjustment. In particular, η is chosen to decrease lin-
early from 20.0 to 1.0 in each epoch from 51 to 150, and from
1.0 to 0.1 in each epoch from 151 to 200. Also, w can af-
fect the validation accuracy variance and convergence. In this
case, values of w around 5 and 20 got higher variance, while

intermediate values around 10-15 achieved the lowest. Since
the window size increases the computation time for the up-
dates, w = 10 was chosen.

Table 1 presents the validation accuracy (averaged over
all classes), the variance of the per-class accuracy values,
the maximum and minimum per-class accuracy values, and
the minimum per-class F1 score, all considering the average
value over 10 independent runs for each of the described sce-
narios. When the proposed techniques, EAD and PAD, are
compared to the SSL state-of-the-art methods, Cos, Adsh, and
ESL, a lower variance can be clearly seen in all cases, which
indicates a more balanced validation accuracy. For EAD,
the minority class validation accuracy is always increased if
compared to other methods, especially for scenarios 2 and
3 where the improvement is substantial. The minimum F1
score obtained with EAD and PAD was substantially higher
than other methods for both imbalanced scenarios, indicat-
ing that misclassification is more uniform among different
classes, while maintaining the overall accuracy.

Note that the majority class accuracy is reduced when the
proposed methods are applied, which is an effect stemming
from the forced balance in the per-class accuracies, suggest-
ing that the bias on the majority class is reduced. The average
accuracy for PAD is increased in all scenarios in comparison
to the baseline (supervised). On the other hand, EAD achieves
a higher average accuracy for scenarios 1 and 3, and lower for
scenario 2, however with a significantly lower variance.

5. CONCLUSION

We proposed a framework for the per-class adaptation of
confidence thresholds for pseudo-labeling. This results in
two semi-supervised learning methods, probability-based
adaptive learning (PAD) and entropy-based adaptive learning
(EAD), with the specific objective of achieving a balance
between the validation accuracy of different classes. Our
numerical experiments show that the proposed methods are
able to reduce the variance of the validation accuracy between
classes when compared to supervised learning or state-of-the-
art pseudo-labeling methods.
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