Using 2D CNN to Detect Tonic-clonic Seizures Based on Accelerometer and Photoplethysmography Signals

Chunjiao Dong, Johannes P. van Dijk, Xi Long, Ronald M. Aarts

Presenter: Chunjiao Dong

Electronics Engineering Department, Signal Processing System Group, Eindhoven University of Technology

Why do we need a device to monitor epileptics?

Epileptic seizures often happen unexpectedly. Caregivers are hard to monitor the patients all day.

When the system suspects a possible major epileptic seizure, a **warning** is transmitted to a caregiver via the base station.

Data collection

Signals:

The data set contains accelerometer and photoplethysmography (PPG) signals.

Devices:

Both signals were continuously collected using NightWatch armbands.

Subjects:

44 patients monitored in Kempenhaeghe.

Dataset:

1336 tonic-clonic (TC) seizures segments (20 minutes), which are collected during the nights in two to three months.

Methods

The proposed method includes two steps.

Prescreen Step – resample

Raw data's sampling rate: Accelerometer (ACM): 10 ~ 12 Hz Photoplethysmography (PPG): 95 ~ 105 Hz

Apply a FIR Antialiasing Lowpass to resample both signals to 20 Hz.

Prescreen Step – extract heart rate signal

- Apply a Butterworth bandwidth filter from 0.5 Hz to 3.5 Hz. (30 bpm to 210 bpm)
- Calculate moving average using a sliding window of 0.75 seconds.
- The red line marks where the signal amplitude is higher than the moving average.
- R-peaks are marked at the maximum of the red area.

Kempenhaeghe

Prescreen Step – extract suspected seizure events and label

Prescreen Step – results

A total of 2874 suspected events from 44 patients were identified, where 1682 (58.5%) of which are actual TC seizures and only 35 seizures were missed.

8 Using 2D CNN To Detect Tonic-clonic Seizures Based on ACM and PPG Signals

Detection Step – length of each actual seizure events

Zero padding/cut all suspected seizure events to 5 minutes.

Detection Step – 2D CNN model and results

The training set included 1336 TC seizure events and 963 non-TC suspected events. The testing set had 345 TC seizures and 230 non-TC suspected events.

accuracy = 79%, sensitivity = 92%, F1 score = 84% on the test data set.

Discussions about future works

- Include whole night's recordings in the first step.
- Include other seizure types such as major seizures.
- Improve the networks model by adding an attention layer.

