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Abstract— Atrial fibrillation (AF) is an insidious disease. Many
long-term wearable electrocardiogram (ECG) monitoring devices
have been used to monitor AF. The accuracy of detectors
used to classify AF/sinus rhythm is already very high on the
public database. Due to the significant individual differences and
interference from other arrhythmias (e.g., premature beats), the
performance of the developed AF detectors can degrade when
tested on wearable ECGs. To tackle this, we proposed to use a
domain-adversarial (DA) learning strategy to minimize feature
distribution between the annotated public ECG database (the
MIT-BIH AF database) and unlabeled dynamic ECG recordings
to improve AF recognition accuracy. DA algorithms based on
the shifted window transformer (DA-ST) and residual neural
network (DA-RN) were proposed and validated on the 2021 China
Physiological Signal Challenge (CPSC) database including four
datasets. The accuracies were 93.85%, 89.78%, 91.93%, and
87.35% on the four datasets when using DA-ST. The correspond-
ing results were 96.67%, 92.25%, 90.58%, and 89.46% when
utilizing DA-RN. Importantly, these results demonstrated supe-
rior performance compared to the results obtained without DA.
The proposed method was validated on 12 wearable long-term
recordings, consisting of four recordings with premature beats,
four recordings of AF with premature beats, two recordings of
sinus rhythms, and two recordings of AF. The average results
were 98.67% (DA-ST) and 97.89% (DA-RN), proving that the
proposed method could provide reliable AF detection for dynamic
ECG recordings with significant individual differences.

Index Terms— Atrial fibrillation (AF), domain-adversarial net-
work (DAN), dynamic electrocardiogram (ECGs), ECG, residual
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neural network (ResNet), shifted window transformer (Swin-
Transformer).

I. INTRODUCTION

ATRIAL fibrillation (AF) is an insidious disease related
to high mortality and morbidity of many cardiovascular

diseases, mainly occurring among the elderly [1]. The initial
stage of AF is asymptomatic and usually presents as parox-
ysmal attacks. Its prevalence is increasing year by year [2].
The 2020 European Society of Cardiology (ESC) guidelines
for the diagnosis and management of AF recommend AF
screening for individuals over 65 years or with other symptoms
indicating an increased risk of stroke [3]. Early screening at
home is crucial for effective AF management. Additionally,
monitoring AF frequency and duration is essential for develop-
ing surgical and treatment strategies [4], as it can significantly
reduce the postoperative recurrence of AF [5].

Continuous monitoring of AF typically involves the use of a
photoplethysmograph (PPG) and a wearable electrocardiogram
(ECG) during daily life [6]. The PPG signal can be used as a
prescreening tool to identify AF by rhythm, while the ECG is a
powerful tool for monitoring the occurrence, maintenance, and
termination of AF in clinical practice. AF can be identified on
the ECG by the absence of P waves and an irregular RR inter-
val. The AF detection rate from a 12-lead Holter monitor is
around 16% [7], but studies have shown that longer monitoring
periods, such as 48 or 72 h, can increase the detection rate of
paroxysmal AF [8]. Wearable ECG monitoring devices allow
for real-time continuous monitoring of patients’ ECGs, which
can greatly aid in the detection of AF. However, the abundance
of unlabeled ECG data from continuous monitoring can create
a significant burden for doctors attempting to diagnose AF.
As a result, automatic diagnosis algorithms are needed to assist
in the detection and diagnosis of AF.

AF analysis methods can be divided into three categories,
shown in Table I. The first is analyzing the ECG characteristics
during AF, including the RR interval analysis [9] and P-wave
or F-wave features analysis [10]. The RR interval analysis
used for AF detection includes the variability analysis of the
instantaneous heart rates [11] and entropy features [12], such
as sample entropy (SampEn), coefficient of SampEn, fuzzy
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TABLE I
AF ANALYSIS METHODS

measure entropy, normalized fuzzy measure entropy, etc. P-
wave or F-wave features analysis is judging the presence of F
waves or the absence of P waves, including detectors based on
P-wave and F-waves [13], [14], wavelet entropy [15], relative
wavelet energy [16], etc. The second is AF detectors that
are based on machine learning and RR interval and P wave
features. With the emergence of deep learning, several deep
learning-based models have been proposed for AF detection
on the PhysioNet/Computing in Cardiology (CinC) Challenge
2017 [17] which is the third AF detection method. Luo et al.
[18] combined time-frequency analysis and 2-D convolutional
neural network (CNN) to train an AF detector. Zhang et al.
[19] used CNN or long short-term memory (LSTM) to detect
AF. Currently, AF detection has matured significantly on open
databases.

The ECG recordings are subject to interpersonal differences
from the different individuals and wave differences measured
from different monitoring devices. The poor generalization
capability can be inevitable when tested on dynamic ECGs
which limits the developed AF detectors to be robustly used
in dynamic monitoring situations. The accuracy of the AF
detector developed by Anderson et al. [20] dropped by about
10% on the independent dataset. The accuracy of the AF
detector from Chang et al. [21] dropped by about 15% and
23% on two separate data. In our previous work [22], the
AF detector proposed by Zhang et al. [23] is trained on the
MIT-BIH AF database, and achieved a specificity of 77.75%
and 65.85%, respectively, on the dataset1 and dataset2 from
CPSC2021. The AF classifier presented by Maknickas and
Maknickas [24] is also trained on MIT-BIH AF database,
achieved results of 92.59% and 85.38% on the dataset1 and
dataset2 from CPSC2021.

The common methods to improve model generalization
ability is to pretrain the AF detection model on the open
database and use part of the ECGs and labels from test data for
fine-tuning the pretrained model. However, manual labeling
of ECGs used for fine-tuning is still required, which can
be a tedious task for long-term recordings with significant
personalization differences. If the difference between the data
distribution of unlabeled dynamic data and the labeled public
database is minimized, the detection accuracy of the developed
AF detectors on dynamic ECGs can be improved. Aligning
labeled ECGs and unlabeled ECGs at the feature distribution
without manual labeling of new data is a suitable method for

recordings from dynamic continuous ECG monitoring. This
approach can effectively improve the accuracy of AF detec-
tion models, while reducing the amount of manual labeling
required for developing these models. It has the potential to
help researchers and developers more efficiently and effec-
tively develop accurate AF detection models for dynamic
ECGs, which can have significant clinical implications for the
diagnosis and treatment of AF.

Therefore, we proposed an improved AF detection method
to align the feature distribution of open database ECGs and
unlabeled dynamic ECGs. Two feature extractors are used: the
shifted window transformer (Swin-Transformer) [25] and the
residual neural network (ResNet) [26]. The Swin-Transformer
uses self-attention based on moving windows and can utilize
local prior knowledge to obtain features of different sizes,
achieving superior results in various visual tasks. In this work,
the Swin-Transformer is used to detect AF. The ResNet is
used for automatic diagnosis of 12-lead ECG and has achieved
good performance [26]. In this study, the ResNet is employed
to detect AF from single-lead ECG. Additionally, domain-
adversarial (DA) learning [27] is a representative method of
adversarial transfer learning methods. We used the DA net-
work (DAN) to reduce the feature distribution of open database
ECGs and unlabeled dynamic ECGs. It is our hypothesis that
the proposed method can improve the detection accuracy of
AF from dynamic ECG recordings.

In this work, we combined the Swin-Transformer and the
ResNet with the DAN respectively to address the impact
of significant individual differences in ECG recordings. The
algorithms were verified on the annotated public database:
MIT-BIH AF database [28], [29] and the 4th China Physio-
logical Signal Challenge (CPSC2021) database with individual
differences and other abnormal rhythms [30], and long-term
recordings with significant individual differences from a wear-
able ECG device [31]. The major contributions of the proposed
work are summarized below:

1) A new AF detection framework based on DA strategy is
proposed to address the limitations of AF detection in
wearable ECG monitoring, which enhances AF detection
accuracy in dynamic monitoring situations with individ-
ual differences and interference from other arrhythmias.

2) Two new AF detectors: DA algorithms based on
the Swin-Transformer (DA-ST) and ResNet (DA-RN)
are designed to minimize feature distribution differ-
ences between annotated ECG databases and unlabeled
dynamic ECG recordings, thereby improving the accu-
racy of AF recognition.

3) The external verification set with other abnormal
rhythms is used to verify the proposed method. DA-ST
and DA-RN are evaluated on the CPSC2021 database,
achieving higher accuracies compared to models without
DA. In addition, higher accuracies are also achieved
compared to other algorithms, demonstrating their reli-
ability in AF detection.

4) Wearable long-term recordings with significant individ-
ual differences are selected as application validation. The
proposed method is further validated on 12 wearable
long-term recordings, including four premature beats

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 06,2024 at 18:40:22 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: AF DETECTION STRATEGY IN DYNAMIC ECGs WITH SIGNIFICANT INDIVIDUAL DIFFERENCES 4002010

and four AF with premature beats. The results show
high detection accuracies, indicating that the proposed
approach can reliably detect AF in dynamic ECG record-
ings with significant individual differences.

II. METHOD

A. Database

A DA strategy is used to minimize the feature distribution
between the source data (annotated public database) and target
data (unlabeled dynamic ECGs). The MIT-BIH AF database
was used as the source domain, and four datasets from the 4th
China Physiological Signal Challenge (CPSC) 2021 database
were used as the target domain. The wearable long-term
recordings were used to verify the algorithm.

1) MIT-BIH AF Database: The MIT-BIH AF
database obtained from the PhysioNet website
(https://www.physionet.org/content/afdb/1.0.0/) [28], [29],
comprises 23 AF recordings (21 paroxysmal) with rhythm
annotations that include AF, AFL (atrial flutter), J (AV
junction rhythm), and N (normal), all sampled at 250 Hz.
Each recording has been manually labeled and consists of
two ECG channels with a duration of 10 h and 15 min. Lead
II is used in this work. We segmented the ECG recordings
into 10-s time windows, which were further classified into an
AF group (33 450 10-s episode) and a non-AF group (33 450
10-s episode) based on the annotations. Specifically, AFL, J,
and N were classified as non-AF.

2) CPSC 2021 Database: The CPSC2021
database, obtained from the 4th CPSC
(http://www.icbeb.org/CPSC2021) [30], consists of two
public datasets and two test sets (which are not publicly
available), all sampled at 200 Hz. The database contains
recordings of three rhythm types: paroxysmal AF rhythm
(AFp), persistent AF rhythm (AFf), and non-AF rhythm
(including normal and other abnormal rhythms). Four
datasets were included. The training set I (dataset1) is
comprising 153 AF recordings and 481 non-AF recordings
from 10 AF patients and 39 non-AF patients. The training
set II (dataset2) includes 319 AF recordings and 250 non-AF
recordings from 37 AF patients and 14 non-AF patients.
The testset I (dataset3) consists of 260 AF recordings and
263 non-AF recordings from 30 AF patients and 10 non-AF
patients. The testset I includes ECGs from both the same and
different sources as the training set I, with at least one test
subset collected using a different ECG monitoring system
compared to the training set I. Similarly, testset II corresponds
to training set II. The testset II (dataset4) consists of 84 AF
recordings and 82 non-AF recordings from 50 AF patients
and 18 non-AF patients. In this study, the ECGs from the
non-AF group and AFf group were segmented into 10-s
episodes (see Table II).

To train the AF detector using a DA strategy, we align 80%
of the 10-s episodes from dataset1 and dataset2, respectively.
An equal number of AF and non-AF episodes from the
MIT-BIH AF database is selected as the source domains using
stratified sampling. The dataset3 and dataset4 are used as
independent testset of dataset1 and dataset2, respectively.

TABLE II
DETAILS OF CPSC2021 DATABASE

TABLE III
DETAILS OF WEARABLE ECG DATABASE

3) Wearable Long-Term ECG Recordings: The wearable
long-term ECG recordings, obtained from the wearable ECG
device [31], are sampled at 400 Hz and include six AF record-
ings and six non-AF recordings, all diagnosed by physicians,
ranging from 55 to 80 years. In this study, the long-term
recordings are segmented into 10-s episodes, of which the
details are provided in Table III. The patients are provided
informed consent, and the protocol is approved by Jiangsu
Provincial People’s Hospital.

The first 5000 10-s episodes from each recording are
selected for feature distribution alignment, and all the data
from each recording are used for testing. For the source
domain, 30 000 10-s AF and non-AF episodes are randomly
selected from the MIT-BIH AF database.

B. Preprocessing

ECG signals are typically affected by noise interference.
To mitigate this, a Butterworth bandpass filter with a passband
of 0.5–45 Hz is applied. Additionally, the ECG signals are
resampled to 400 Hz.

C. Proposed Method

In order to improve the accuracy of AF detection in wear-
able ECGs, it is necessary to address the differences in ECG
distribution between labeled public databases and unlabeled
wearable ECGs. These differences can negatively impact the
performance of AF detectors trained on public databases
when tested on wearable ECGs. To overcome this limitation,
it is imperative to eliminate these distributional differences
through appropriate measures. Here, we propose to use domain
adaptation techniques to align the feature distributions of the
two datasets. This method does not need to manually label
the wearable ECGs, and is a suitable method for wearable AF
detection, as shown in Fig. 1. We adopt the DAN [27] and
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Fig. 1. Domain adaptive framework for detecting AF.

propose two AF detectors: DA-ST and DA-RN to eliminate
the difference in ECG feature distribution. In DA-ST AF
detector, the DAN is combined with the Swin-Transformer
with to detect AF. The DA-RN AF detector adopts a ResNet
as the feature extractor for processing ECG data. The network
structure of AF detector based on DAN is depicted in Fig. 2.

1) DA Network: The DAN [27] is a transfer learning
method and a representative example of domain adaption
methods. Its basic structure consists of a feature extractor,
a label classifier, and a domain discriminator. The feature
extractors for the label classification task and the domain
identification task share weights, that is, share the same feature
extractor. The network will be trained to enable the label
classifier to distinguish the class of data in the source domain,
rendering the domain discriminator unable to distinguish the
origin of the data. The label classifier and the domain dis-
criminator both include a multilayer perceptron (MLP) and
Softmax layer, as shown in Fig. 2. The domain discriminator
is inspired by the generative adversarial network (GAN) and is
equipped with a gradient reversal layer (GRL), which allows
it to effectively align features from the source and target
domains. The GRL is placed between the feature extractor and
the domain discriminator. During the backpropagation process,
the gradient of the domain classification loss of the domain
classifier is automatically reversed before backpropagating to
the parameters of the feature extractor. This results in the
implementation of an adversarial loss, similar to GANs, which
further enhances the feature alignment.

The feature extractor is denoted by G f , the label classifier
by G y , and the domain discriminator is Gd . The loss function
L includes two parts [32]: the label classifier loss L y and the
domain discriminator loss Ld , defined as

L
(
θ f , θy, θd

)
=

1
n

∑
xi ⊂Ds

L y
(
G y

(
G f (xi )

)
, yi

)
−

λ

n + m

∑
xi ⊂Ds∪Dt

Ld
(
Gd

(
G f (xi )

)
, di

)
(1)

where θ f , θy , and θd are the parameters of G f , G y , and Gd , yi

and di are the class label and domain label of a sample xi , n
and m are the of samples in the source and target domains, Ds

and Dt denote the datasets of the source and target domains,
and λ is a trade-off parameter. θ f and θy are updated by
minimizing the loss L to get optimum value θ̂ f , θ̂ y, while
θd is updated by maximizing the loss L to get optimum θ̂d ,

that is, (
θ̂ f , θ̂ y

)
= arg min

θ f θy
L
(
θ f , θy, θd

)
(2)(

θ̂d
)

= arg max
θd

L
(
θ f , θy, θd

)
. (3)

In this work, the cross-entropy loss is used for both the label
classifier loss function and domain discriminator loss function.

The stochastic gradient descent (SGD) is used as the opti-
mizer to update θ f , θy , and θd , and the initial learning rate
µ0 is set at 0.01. In the DAN, the learning rate is transformed
with the iterative process, and the formula is as follows:

µp =
µ0

(1 + α · p)β
(4)

where, µ0 is the initial learning rate. p represents the relative
value of the iteration process, that is, the ratio of the current
iteration times to the total iteration times. α and β are
hyperparameters. α = 10, β = 0.75.

2) Swin-Transformer: The original transformer architecture
often conducts global self-attention operations when process-
ing image data, i.e., calculating the relationships between
a token and all other tokens, which can lead to enormous
computation and memory costs. Compared with 2-D image
data, ECG data are 1-D long sequence data, making the
conventional Swin-Transformer unsuitable for AF detection
tasks. Here, the latest Swin-Transformer architecture is mod-
ified, which greatly reduces the computational memory cost
by introducing a shifted window partitioning strategy into the
self-attentive module. The shifted 2-D window mechanism of
the Swin-Transformer is extended to 1-D windows temporal
feature extraction in ECGs.

The feature extraction module of the proposed method is
shown in Fig. 2. The input size of the model is (B, 1, 4000),
with B the batch size, and the window size is 7. Then after a
4 down the sampling layer, the output dimension is (B, 1000,
32). After that, through three Swin-Transformer blocks and
1/2 down-sampling modules, the output feature dimensions
are (B, 500, 64), (B, 250, 128), (B, 125, 256), and (B, 125,
256) respectively. The batch size B was chosen as 64 and the
model was trained for 100 epochs.

The standard Swin-Transformer architecture is adopted to
make it compatible with the long sequences AF detection
tasks. Here, consecutive Swin-Transformer blocks are com-
puted as

ẑl
= 1DW_MSA

(
LN

(
ẑl−1))

+ ẑl−1 (5)

zl
= MLP

(
LN

(
ẑl))

+ ẑl (6)

ẑl+1
= 1DSW_MSA

(
LN

(
ẑl))

+ ẑl (7)

zl+1
= MLP

(
LN

(
ẑl+1))

+ ẑl+1 (8)

where 1DW_MSA and 1DSW_MSA represent window-based
multihead self-attention blocks using regular and shifted win-
dow configurations, respectively; LN is a LayerNorm layer,
ẑl and zl denote the output feature of 1DW_MSA and
1DSW_MSA, respectively.

3) Residual Neural Network: The deep neural network
based on ResNet architecture is proposed by Ribeiro et al. [26]
to diagnose the 12-lead ECG. The input size to the model is
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Fig. 2. Architecture of AF detector based on DAN. (a) AF detection network based on DA learning. (b) Feature extractor based on Swin-Transformer.
(c) Feature extractor based on ResNet.

originally (12, 4096) in Ribeiro’s work. Here, the same deep
neural network is applied to single-lead ECG for classifying
AF/non-AF signals. The input size is (1, 4000). The model
is trained for 60 epochs and the construction of the model is
unchanged.

The network included a convolutional layer (Conv) and
four ResNet blocks with two Conv per block. Each Conv’s
output was rescaled by batch normalization (BN), followed
by a rectified linear activation unit (ReLU). Dropout is used
after ReLU. Skip connections utilize Max Pooling and Conv
with a filter length of 1 (1 × 1 Conv).

The Conv uses a filter length of 16 and begins with
64 filters for the first layer and residual block. The number
of filters increases by 64 every second residual block, while
subsampling by a factor of 4 occurs at every residual block.
The batch size is 32.

D. Experimental Evaluation Methods

Four evaluation indicators are utilized in this study, includ-
ing Sensitivity (Se), Specificity (Sp), Accuracy (Acc), and
Measure of Accuracy (Macc). The four indices used for
evaluation are false positive (FP), false negative (FN), true
positive (TP), and true negative (TN), which are determined
based on the positive or negative labeling of the samples.
Where

Se = TP/(TP + FN) (9)
Sp = TN/(TN + FP) (10)

Acc = (TP + TN)/(TP + FN + TN + FP) (11)
Macc = (Se + Sp)/2. (12)

The evaluation indicators used for long-term wearable ECG
recording are TPt and N, where TPt represents the number
of correctly detected 10-s segments in real recordings, and
N represents the number of 10-s segments in the long-term
recordings. The detection rate is defined as

D_acc = TPt/N . (13)

III. RESULTS

A. Results From the CPSC 2021 Database

1) Results on Dataset1 and Dataset2: Table IV shows the
results on dataset1 and dataset2 when the training set is the
MIT-BIH AF database. When using the DA strategy, dataset1
and dataset2 are used as target domain 1 and target domain 2.

For the AF detector based on DA-ST, an increase is
observed in the Sp and Se by 12.88% and 11.36% on dataset1
and an increase of 16.55% and 1.67% on dataset2. For AF
detector based on DA-RN, the Sp and Se increase by 15.56%
and 1.67% on dataset1, and they increase by 17.14% and
5.35% on dataset2.

2) Test Results on Dataset3 and Dataset4: Dataset3 was
used as an independent test set for target domain1 and dataset4
is used as an independent test set for target domain2.

Table IV shows the test results on dataset3 and dataset4.
DA-ST-based AF detector improves results, with an increase
in Sp of 19.57% on dataset3, and an increase in both Sp and
Se of 2.79% and 4.42% on dataset4. For the AF detector based
on DA-RN, the Sp increases by 22.59% on dataset3 and the
Sp and Se increase by 2.81% and 10.44% on dataset4.
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TABLE IV
RESULTS ON CPSC2021 DATABASE

TABLE V
RESULTS ON THE WEARABLE ECG DATABASE

B. Results From the Wearable ECG Database

Table V shows the test results on 12 long-term wearable
ECG recordings when the MIT-BIH AF database as the train-
ing set. The Swin-Transformer-based AF detector achieves
an average accuracy of 95.06%, with the best accuracy of
99.73% and the worst accuracy of 84.62% on recording 3.
The ResNet-based detector achieves an average accuracy of
94.32%, with the best accuracy of 99.94% and the worst
accuracy of 79.75% on Recording 9. In the discussion section,
the performance of the Swin-Transformer-based AF detector
and ResNet-based AF detector are compared and analyzed in
wearable recordings.

The DA-ST-based detector achieves an average accuracy
of 98.67%, best accuracy of 99.95%, and worst accuracy
of 96.62%. The DA-RN-based detector achieves the best
accuracy of 99.99%, the worst accuracy of 90.14%, and an
average accuracy of 97.89%.

IV. DISCUSSION

A. Performance Comparison of Algorithms

1) Results Analysis of DA Strategy: The AF detector trained
on the MIT-BIH AF database exhibits relatively low accuracy

when tested on the CPSC 2021 database. This is because there
are significant differences in the data sources between the test
set and the training set, as they come from different individ-
uals. The MIT-BIH AF database consists of 23 available AF
recordings, while the CPSC 2021 database comprises 127 AF
patients and 81 other normal or arrhythmia patients.

A DAN is employed to align the feature distribution of
the CPSC 2021 database and the MIT-BIH AF database.
The visualization toolkit T-SNE [33] is applied to reduce the
features extracted by the feature extractor to 2-D features
(Feature1 and Feature2) and draw the feature distribution.
Fig. 3 shows the feature distribution before and after using
DAN (Swin-Transformer and DA-ST as examples), illustrating
the role played by DAN. Meanwhile, the results from DA-ST
and DA-RN are equally promising in Tables IV and V, which
demonstrate that the DAN can effectively align feature dis-
tributions from different data sources, thereby improving the
detection accuracy of AF detectors across different individuals.

2) Comparison With Classification Algorithms: Based
on the experimental results, it can be observed that
Swin-Transformer does not perform as well as ResNet on
dataset1 and dataset2. On dataset3 and dataset4, Swin-
Transformer performs better than ResNet. For different data,
the performance of Swin-Transformer and ResNet is different.

3) Results Analysis of Wearable ECG Recordings: Twelve
wearable long-term recordings consist of four premature beats,
four AF with premature beats, two sinus rhythms, and two AF,
with noticeable interpatient variations. Notably, the MIT-BIH
AF database lacks recordings with simultaneous premature
beats and AF, and recordings with premature beats.

Fig. 4 shows a comparison of the results from different
AF detectors on 12 long-term wearable recordings. The AF
detector based on ResNet and the AF detector based on RR
interval [22] have a similar ability to detect AF, with relatively
high detection rates, but they exhibit a higher false detection
rate for other abnormal rhythms, compared to the AF detector
based on Swin-Transformer. For AF recordings (Recording
1 and Recording 2) and sinus rhythm recordings (Recording
7 and Recording 12), the AF detectors perform very well.
But for AF patients with premature beats (Recording 3 and
Recording 6), the AF detector based on Swin-Transformer has
a lower accuracy, with test results of only 84.62% and 86.28%,
respectively. In contrast, the AF detector based on ResNet
performs well. Fig. 5 illustrates examples of 10-s episodes
from Recording 3 and Recording 6. Their rhythm information
shows up as AF, but the waveform information shows that
AF and premature beat occurred simultaneously. Furthermore,
for premature beat patients (Recording 8, Recording 9, and
Recording 10), the test results from Swin-Transformer exceed
90%, but the test result from ResNet is only 79.95% on
Recording 9, and the results for Recording 10 and Recording
11 are 88.18% and 86.31%, respectively. Fig. 5 highlights that
the premature atrial contraction (PAC) and ventricular prema-
ture contraction (PVC) are from Recording 9 and Recording
11. Their rhythms are similar to that of AF, but the waveforms
are not similar. The test results on the wearable database show
that Swin-Transformer is more sensitive to waveform informa-
tion, while ResNet is more sensitive to rhythm information.
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Fig. 3. Feature distributions by T-SNE (Swin-Transformer and DA-ST as examples). (a) Swin-Transformer. (b) DA-ST.

Fig. 4. Comparison of results from different AF detectors on wearable
ECG. (a) Comparison of results on AF recordings. (b) Comparison of results
on non-AF recordings.

Notably, the significant individual differences and inter-
ference with other arrhythmias in the real wearable ECG
monitoring state present a challenge for the AF detector. How-
ever, aligning the wearable ECG database with the MIT-BIH
AF database improves the average test D_acc by 3.61% and
3.57% respectively from DA-ST and DA-RS.

Fig. 5. Examples of 10-s episodes from wearable ECG recordings.

B. Advantages Over Other Algorithm Models

Traditional machine learning-based AF detectors, such as
those based on RR interval, have been commonly used for
the detection of AF in long-term wearable ECG signals.
However, they are prone to misidentifying other arrhythmias
as AF. In contrast, deep learning-based AF detectors offer
the advantage of end-to-end signal processing. Nonetheless,
they face challenges in generalization due to significant wave-
form differences between individuals and poor performance
when tested on independent datasets [22]. In this study,
two deep learning-based AF detectors (Swin-Transformer and
ResNet) on independent ECG recordings are trained and
tested. To address the challenge of personalized differences,
a domain adaptive strategy is used, resulting in significantly
improved detection accuracy on independent datasets. Table VI
shows the performance of the different AF detectors tested on
the CPSC2021 database when the MIT-BIH AF database was
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TABLE VI
PERFORMANCE OF METHODS ON THE CPSC2021 DATABASE

used as the training set. Compared to AF detectors based on
machine learning or deep learning, the DA-ST and DA-RN
show better performance.

1) Comparison With Machine Learning Algorithms: Ma et
al. [34] evaluated the performance of AF detectors developed
by Datta et al. [35], Zabihi et al. [36], Bin et al. [37], and
Ma et al. [22] on the dataset1 and dataset2 from CPSC2021
database, and the results are presented in Table VI. The AF
detection algorithm from Datta et al. [35] combined AF fea-
tures and Cascaded Binary, with results on dataset1 of 97.26%
for Se and only 84.81% for Sp, and corresponding results on
dataset2 of 94.87% and 71.09%. The AF detection algorithm
developed by Zabihi et al. [36], which combines AF features
and random forest, has a Se of 95.63% and a Sp of 82.59%
on dataset1 and 90.85% and 67.96% on dataset2 respectively.
Bin et al. [37] developed an AF detection algorithm using AF
features and AdaBoost, which achieved Se of 89.25% and Sp
of 91.14% on dataset1, corresponding to 84.57% and 78.49%
on dataset2. The AF detector developed by Ma et al. [22]
achieved the highest performance on the CPSC2021 database,
with a Se of 97.59% and Sp of 89.83% on the dataset1, and Se
of 96.46% and Sp of 78.64% on the dataset2. However, this AF
detector exhibited low detection rate for non-AF. In addition,
machine learning-based AF detection algorithms require expert
knowledge for feature extraction and feature selection, which
is time consuming and complex. DA-ST and DA-RN are end-
to-end algorithms and achieve better performance.

2) Comparison With Deep Learning Algorithms: The per-
formance of deep learning-based AF detectors developed
by Zhang et al. [23], Maknickas and Maknickas [24], and
Ma et al. [34] on the CPSC 2021 database are shown in the
Table VI. The AF detector developed by Maknickas and
Maknickas [24] achieved a Se of 92.47%, Sp of 92.59% on
dataset1, and Se of 85.38%, Sp of 77.75% on dataset2. The
AF detector from Zhang et al. [23] had a Sp of 90.20% and

a Se of 77.57% on dataset, and a Sp of 65.85% and a Se
of 93.72% on dataset2. The AF detector proposed by Ma
et al. [34] combined RR interval and P-wave features using
LSTM-AE and DTW to detect AF, achieving a Se of 97.44%,
Sp of 98.50% on dataset1, and Se of 96.13%, Sp of 87.42%
on dataset2. However, this detector required four steps and
was combined with SVM and LSTM-AE, resulting in a more
complex and time-consuming detection process. On dataset2,
DA-RN achieves the best results with no manual intervention.

V. CONCLUSION

To mitigate the impact of individual differences and other
abnormal rhythms in dynamic ECG data, we propose improved
AF detectors based on Swin-Transformer and ResNet, which
utilize a domain adaptation strategy by training on both
annotated public databases and unlabeled dynamic ECGs.
The proposed method yields improved detection accuracy on
independent test data. The proposed detector is evaluated on
12 wearable long-term recordings, including four premature
beats, four cases of AF with premature beats, two sinus
rhythms, and two cases of AF. The average detection results
are 98.67% and 97.89% for the two test sets, respectively.
The results demonstrate the potential clinical application of the
proposed algorithm. Since the Swin-Transformer introduces a
moving window and focuses on localized features, its perfor-
mance degrades when encountering long sequences of noisy
data. In future work, the ECG quality assessment algorithm
can be combined with Swin-Transformer for AF detection
in wearable ECGs, which will improve the accuracy of AF
detection.
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