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Abstract—Atrial fibrillation (AF) is a prevalent clinical
arrhythmia disease and is an important cause of stroke,
heart failure, and sudden death. Due to the insidious on-
set and no obvious clinical symptoms of AF, the status
of AF diagnosis and treatment is not optimal. Early AF
screening or detection is essential. Internet of Things (IoT)
and artificial intelligence (AI) technologies have driven the
development of wearable electrocardiograph (ECG) devices
used for health monitoring, which are an effective means
of AF detection. The main challenges of AF analysis using
ambulatory ECG include ECG signal quality assessment to
select available ECG, the robust and accurate detection of
QRS complex waves to monitor heart rate, and AF iden-
tification under the interference of abnormal ECG rhythm.
Through ambulatory ECG measurement and intelligent de-
tection technology, the probability of postoperative recur-
rence of AF can be reduced, and personalized treatment
and management of patients with AF can be realized. This
work describes the status of AF monitoring technology
in terms of devices, algorithms, clinical applications, and
future directions.

Index Terms—Atrial fibrillation (AF), electrocardiogram
(ECG), ambulatory ECG.

I. INTRODUCTION

A TRIAL fibrillation (AF) is a progressive and insidious
disorder that typically begins intermittently and terminates
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spontaneously. The prevalence of AF is about 1%–2% of the
total population [1], [2]. The incidence of AF has increased
significantly in patients with various cardiovascular diseases,
particularly for the elderly. It has been found that the lifetime
risk of AF by the age of 40 is 25% [3]. AF can increase the risk
of stroke by five-fold [4]. The annual cost of related treatment,
nursing and drugs for AF is enormous [5].

According to lasting time, AF is divided into four types in
the 2020 European Society of Cardiology (ESC) Guidelines:
paroxysmal, persistent, long-term persistent, and permanent [6].
Paroxysmal AF (PAF) is the initial stage of AF and is charac-
terized by spontaneous termination or intervention within seven
days of onset, where about 18% of PAF evolve into permanent
AF over 4 years [7]. Monitoring and treatment of AF in its
early stages is very important. Persistent AF persists for more
than seven days. Long-term continuous AF is staying for more
than 12 months. Permanent AF refers to being accepted by the
patient, and the physician will no longer attempt to maintain
sinus rhythm.

The challenges in diagnosing AF arise from its intermittent
and asymptomatic nature, as symptoms commonly associated
with AF, such as fatigue, shortness of breath, and palpitations,
may coexist with cardiovascular diseases such as heart failure
[8]. Many AF patients fail to recognize symptoms associated
with AF, hindering prompt treatment that can lead to high
risk consequently. A report from the British National Clinical
Guideline for Management of Atrial Fibrillation in Primary
and Secondary Care found that less than one-third of patients
with AF were found to have AF and entered the clinical inter-
vention phase [9]. A British study reported that in the decade
between 2020 and 2030, the number of newly diagnosed AF
patients over the age of 65 will increase [10]. A higher 1-year
mortality was evident in asymptomatic AF patients compared
with symptomatic AF patients [11]. Early detection of AF is
essential for its management promptly. 2020 the ESC Guide-
lines for the diagnosis and management of AF recommend its
screening for individuals over the age of 65 or at increased
stroke risk. Early intervention and therapy reduce the risk of
adverse cardiovascular outcomes in early-stage AF patients over
75 years [6]. A recent study conducted in China determined the
prevalence of AF and gaps in AF awareness and management
in the country. The study found that the prevalence of AF in
China has significant treatment gaps and a low awareness rate,
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and varied from 0.9% to 2.4% across geographical regions [12].
AF rarely occurs alone, therefore the assessment of risk factors
and comorbidities is essential for early AF management [13].
Sustainable ECG monitoring devices can be used to monitor
the high incidence of AF and stroke risk factors in AF patients,
enabling real-time and long-term patient management for those
at high risk of stroke [14]. Furthermore, the primary reason for
the recurrence rate after surgery is the difference in surgical plans
and the severity of AF [15]. Continuous monitoring of patients
before surgery, quantifying the type and severity of AF, may
help reduce postoperative recurrence of AF [16].

With the popularization of mobile terminals and the rapid
development of technologies such as the Internet of Things, Big
Data, cloud computing, and artificial intelligence (AI), wearable
ECG monitoring has begun to be widely accepted by the public
as a new method for monitoring people’s heart health in their
daily life [8], which can be used in different living scenarios or
activities such as standing, walking, eating, and sleeping [17].
As a low-load physiological monitoring technology, wearable
ECG can provide a new way of monitoring, evaluating, and
managing AF [18]. A recent study examined the effect of
wearable continuous ECG monitoring patches on the detection
of undiagnosed AF. The study found that wearable ECG mon-
itoring devices reported higher rates of AF diagnosis among
individuals who were at an increased risk for AF. Individuals
who used wearable ECG monitoring also had better initiation of
anticoagulants and increased utilization of healthcare resources
one year later [19]. In the future, wearable devices may provide
more precise anticoagulant targeting while reducing the overall
risk of stroke and the social care costs of AF-related disease [20],
[21]. For individuals at high risk of having AF, using home-based
wearable ECG monitoring can lead to a higher diagnosis rate
of AF and timely use of anticoagulants, resulting in improved
clinical outcomes [19], [22]. The 7-day ECG monitoring should
be required as a practical first-line approach to improve diagnosis
and therapeutic management after stroke [23]. Additionally,
frequent monitoring using single-ECG devices can reduce the
incidence of thromboembolic events, severe bleeding, and death
[24].

Ambulatory ECG continuous monitoring can continuously
collect massive ECG data. To detect AF, AI-driven approaches
have been applied to analyze enormous ECG signals, which
has dramatically improved the detection rate of AF. Such
achievement has been accelerated because of the publicly avail-
able datasets from multiple sources. For example, the Phys-
ioNet/Computing in Cardiology (CinC) Challenge 2017 [25]
aims for AF classification from short single-lead ECG record-
ings, and the contestants developed several AF detectors using
AI models. The China Physiological Signal Challenge 2019
(CPSC 2019) [26] aims to encourage the development of al-
gorithms for QRS detection from ambulatory single-lead ECG
recordings, often with relatively low signal quality and abnormal
rhythm waveforms. The China Physiological Signal Challenge
2021 (CPSC 2021) [27] aims to encourage the development
of algorithms for searching the PAF from ambulatory ECG
recordings.

Although the AF monitoring technology based on wearable
ECG has been developed for many years, the current AF moni-
toring faces several challenges, briefly described in the follow-
ing:

� Wearable sensing: The environment of wearable ECG
monitoring involves daily life with various living scenarios
and activities. Therefore, developing wearable devices
with accurate ECG measurements while ensuring porta-
bility and convenience is a significant challenge.

� AF detection accuracy: AF detection based on low-quality
ECG signals is more challenging due to motion artifacts
and noise interference, compared to static ECG data mea-
sured in a controlled environment.

� Clinical application: The generalization ability of AF
detection algorithms is limited due to variations in per-
sonal data. Improving the detection rate of AF in clinical
data is a big challenge. Meanwhile, the interpretability of
deep learning-based AF detection algorithms in clinical
applications is a challenge.

This article introduces an overview of wearable AF moni-
toring. Section II presents AF monitoring methods. Section III
describes the influencing factors of AF analysis algorithms.
Section IV describes wearable AF analysis and processing meth-
ods. Section V discusses AF clinical application. Section VI
highlights the future directions. Finally, conclusions are drawn
in Section VII. For a comprehensive review, we searched mul-
tiple platforms, including IEEEXplore, ScienceDirect, Google
Scholar and PubMed databases, and mainly selected studies pub-
lished in reputable journals and conferences, which are ranked
by reputable citation indexes (e.g., Science Citation Index). In
each sub-section of the literature selection, we used keywords
to search out relevant literature, screened representative arti-
cles through literature reading, compared these recent studies,
outlined their limitations, and provided directions for future
development. This will enable researchers to easily access the
required information and select the appropriate algorithm for
their specific application.

II. ATRIAL FIBRILLATION MONITORING METHODS

AF, particularly PAF, is a challenging disease to detect, with
a low detection rate at onset. One study [28] found that the
detection rate of PAF using 12-lead routine ECG and ECG
monitoring was only 0.6% and 0.5%, respectively, while the
detection rate from 12-lead Holter was 16%. The detection
rate of AF is closely related to the duration of AF monitoring,
highlighting the need for convenient and continuous monitoring
technology to facilitate AF detection.

Wearable health monitoring is an emerging technology that
enables continuous monitoring of vital signs and is widely
adopted to diagnose and assess significant health risks and
chronic cardiac diseases. In the future, these devices may be used
to screen for cardiovascular disease at home, making it possible
to monitor occult cardiovascular disease. With the progress of
sensing technology, long-term physiological signal monitor-
ing equipment has become more comfortable to use. Several
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Fig. 1. Portable ECG monitoring devices. (a) Apple Watch [40]. (b) Zenicor ECG device [43]. (c) AliveCor ECG device [44]. (d) The 3-lead wearable
ECG device with 72-h monitoring. (e) The single-lead ECG device with 24-h monitoring.

portable wearable devices are used for AF screening, including
Photoplethysmography (PPG) signal monitoring and Ballisto-
cardiogram (BCG) signal monitoring. BCG signal and PPG sig-
nal can only reflect cardiac rhythm information, and they are typ-
ically used for arrhythmia disease screening rather than disease
diagnosis. In particular, the BCG signal sensor is usually placed
in the mattress or cushion, not a portable monitoring method.

The primary portable AF monitoring devices currently avail-
able are PPG-based AF screening devices and ECG-based wear-
able monitoring devices [29]. The ECG is the direct measure-
ment of the electrical conduction in the heart and thus clearly
reflects AF. ECG-based AF monitoring can meet the diagnostic
needs of clinicians. While the PPG is a more indirect optical mea-
surement of electrical/electromagnetic physical phenomena, and
thus PPG-based AF monitoring is only suitable for AF screening.

A. PPG-Based AF Monitoring Devices

The top problems faced by physicians managing suspected
AF patients are low detection rates and non-adherence. The
integration of PPG and mobile health technologies may offer
a promising approach by combining screening methods with
interventions to facilitate earlier AF detection and improve the
management of the condition [30].

The watches such as Apple [31], Huawei [32], Huami [33],
and Xiaomi [34] all utilize PPG to screen for AF. These research
results indicate that continuous monitoring of AF through smart
PPG devices is a practical screening method. This monitoring is
expected to reduce AF-related complications, especially stroke,
through early intervention. In 2019, The Huawei Heart Study
reported that approximately 187000 individuals used smart
devices to monitor their pulse rhythm, and demonstrated that
mobile Health (mHealth) technology can provide integrated care
management for patients with AF [35]. In the same year, the
Apple Heart Study enrolled 419093 participants to identify pulse
irregularity and variability using PPG from the wrist. These
studies will serve as a foundation for how wearable technology
can inform clinical approaches to AF screening [31].

The PPG-based AF detector analyzes AF by measuring pulse-
pulse intervals only. However, arrhythmias with an irregular
pulse rhythm are not exclusive to AF. Therefore, PPG-based AF
analysis is considered a pre-screening method [36]. Clinically,
ECG is a potent noninvasive tool for monitoring the occurrence,
maintenance, and termination of AF [37].

B. ECG-Based AF Monitoring Devices

During AF episodes, ECGs demonstrate two distinct features:
the disappearance of the P wave and the appearance of the F
wave, which is a series of continuous and irregular atrial excita-
tion waves, as well as the absolute irregularity of the RR interval
[38], [39]. Currently, ECG monitoring devices mainly include
the short-term ECG monitoring devices used for examinations
in outpatient settings or home monitoring and wearable devices
used for long-term ECG monitoring, as shown in Fig. 1.

1) The Short-Term ECG Monitoring Device: The wrist-
worn ECG devices, like the Apple watch [40], are capable of
30-s ECG monitoring and can be used to monitor AF in the
home. Single-lead handheld ECG devices have been used for AF
screening in outpatient clinics [41]. The single-lead handheld
ECG devices such as the Omron heartscan device [42], the
Zenicor ECG device [43], and the AliveCor ECG device [44]
record 30-second ECG readings in outpatient or home settings
for screening arrhythmias, including AF. The STROKESTOP
study [24] presented at the annual congress of the European
Heart Rhythm Association in 2021, screened patients aged
75-76 years old using single-lead handheld ECG devices twice
daily for two weeks. The study reported a 4% reduction in the
composite of thromboembolic events, severe bleeding, and death
at a minimum follow-up of 5.6 years.

The more frequent or longer ECG monitoring, the more the
AF is detected. A recent study [45] compared daily ECG trans-
mission to serial 6-day Holter ECG for assessing the efficacy of
AF ablation. Each patient underwent daily 30-second ECG trans-
telephonic monitoring (TTM) and standard 6-day ambulatory
ECG monitoring at 3, 6, and 12 months after ablation. The results
showed that daily 30-second ECG monitoring detected more
patients with AF recurrences than the standard 6-day Holter
ECG monitoring.

Although the daily 30-second ECG TTM may replace stan-
dard Holter ECG for AF detection after ablation, short-lasting
ECG monitoring, such as those performed using TTM, is un-
suitable for AF burden assessment. For AF burden assessment,
wearable devices with continuous rhythm monitoring are more
appropriate.

2) The Long-Term ECG Monitoring Device: Long-term
ECG monitoring is a well-established strategy for identifying in-
dividuals who require further cardiac examination and treatment.
Occult arrhythmia often requires long-term ECG monitoring.
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Since the 1990s, wearable ECG devices have been the subject
of research by numerous units, taking advantage of the de-
velopment of microprocessors, micro-sensors, communication
technology, and fabric electrode materials. The AliveCor Kardia
Mobile Home Monitoring Device is most beneficial for large-
scale AF screening, especially outside of traditional healthcare
settings [46]. The rhythm ZioXT is a single-use, 14-day ambula-
tory ECG monitoring patch that provides continuous monitoring
for up to two weeks [19]. The Corventis NUVANT/Medtronic
SEEQ mobile cardiac telemetry (MCT) system utilizes a simple
patch design and can monitor ECG for up to 30 days by serially
using four sensors [47]. Furthermore, a three-lead wearable
device developed jointly by Southeast University and Lenovo
can provide continuous ECG monitoring for 72 hours [48].

Asymptomatic AF is often intermittent, making it difficult to
diagnose with periodic surveillance alone. Continuous monitor-
ing has been found to detect more AF in a shorter period [49]. In
a study, remote heart rhythm sampling using the AliveCor Heart
Monitor for AF screening was assessed, and it was reported
that single-lead ECG screening was significantly more effective
in diagnosing AF events compared to routine care [50]. Yet,
another study published in the American Journal of Cardiology,
compared the diagnostic outcomes of monitoring by a 14-day
Zio XT (a patch-based continuous monitor), a 24-hour Holter
monitor, and a 30-day event monitor (an external loop recorder).
It was found that newly detected AF/AFL lasting ≥30 seconds
was recorded more frequently using 14-day continuous monitor-
ing compared to 24-hour Holter, but not significantly different
from 30-day event monitoring [51].

Continuous ECG monitoring can cause discomfort for the
person being monitored since the electrode needs to remain
in constant contact with the skin surface. Additionally, some
individuals may be allergic to the electrode material, making this
type of monitoring unsuitable for them. However, non-contact
vital signs monitoring technology has emerged as a new ap-
proach in recent years. This technology can measure physio-
logical signals generated by cardiopulmonary activities without
the need for direct skin contact. This type of monitoring can be
worn as a medical monitoring system on the body or integrated
into daily health care. This enables real-time acquisition of vital
sign signals while not interfering with people’s daily activities
in their living environment.

Non-contact ECG sensor technology offers a convenient so-
lution for ECG monitoring in non-hospital settings [52]. To
enhance comfort and ease of use, various ECG measurement sys-
tems have been developed that can be adapted to chairs, beds, and
clothing [53], [54], [55]. For remote monitoring, a smartphone
Internet of Things server and a web interface can be integrated
into the system [56], providing a more user-friendly approach
to home monitoring of AF. Rachim et al. [53] have devised
a low-power-transmission ECG monitoring system consisting
of capacitive-coupled electrodes embedded in an armband. In
2019, Leicht et al. [54] designed an ECG signal measurement
system with electrodes implanted in car seats to collect ECG
signals. Furthermore, Xiao et al. [57] proposed an ECG signal
acquisition system based on capacitive coupled textile electrodes
to monitor ECG signals during sleep.

TABLE I
OPEN-SOURCE AF ALGORITHMS

At present, non-contact ECG monitoring is also a research
hotspot due to its potential for providing convenient and com-
fortable ECG monitoring. However, the technology is not yet
mature, and the monitored signal is greatly affected by noise,
posing significant challenges to algorithm analysis. As a result,
more research is needed to improve the accuracy and reliabil-
ity of non-contact ECG monitoring technology. Nonetheless,
with further development, non-contact ECG monitoring has
the potential to revolutionize ECG monitoring by providing a
more comfortable and convenient experience for patients while
maintaining accurate readings.

III. THE INFLUENCING FACTORS OF ATRIAL FIBRILLATION

ANALYSIS ALGORITHM

With the rapid development of computer technology, re-
searchers are increasingly incorporating artificial intelligence
(AI) technology to diagnose and treat diseases by establishing
automated diagnosis models through data mining and machine
learning methods. AI algorithms for AF analysis include four
types: AF analysis based on atrial activity, AF analysis based on
ventricular activity, AF detection based on traditional machine
learning, and AF detection based on deep learning. There are
several open-source AF algorithms from challenges [25], [27],
[58] or websites based on heart rate variability analysis [59], as
shown in Table I.

Machine learning and deep learning present a unique opportu-
nity to provide an accurate automated diagnosis of AF. Yet, these
models must demonstrate generalizability to external datasets
integrating a range of population samples [60]. FDA approved
the algorithm presented by Noseworthy et al. [61] which was
tested in diverse populations and presented good results across
race and ethnicity for left ventricular systolic dysfunction [24].
However, studies about the generalization of AI algorithms in
the context of AF are scarce. Biton et al. [60] assessed the
generalization ability for the task of AF events detection and
AFB estimation across four geographical centers (Israel, USA,
China, Japan) ages, and sexes. The resulting ArNet2 algorithm
was demonstrated to be robust, i.e., highly performing, and gen-
eralizable, and provided the new state-of-the-art performance
for the task of AF events detection based on the beat-to-beat
interval time series.

However, in practical applications, the accuracy of AF anal-
ysis still needs improvement [62]. In the following, we will
analyze the reasons from the open-access databases and the
wearable ECG signal.
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TABLE II
DETAIL OF THE AF DATABASE

Fig. 2. Signals from different individuals.

A. The Impact of Open-Source Database

There are several databases and challenges in AF detection,
including the MIT-BIH AF database [63], [64], the MIT-BIH
arrhythmia database [65], the long-term AF database [66], the
PhysioNet/CinC Challenge 2017 [25], the CPSC2021 [27], the
CPSC2018 [57], the Chapman-Shaoxing 12-lead ECG database
[67]. These databases are detailed in Table II.

In addition, the wearable database in this article was approved
by the Ethics Committee, and study Number: 2020-SRFA-183.

1) The Waveform Difference of Different Databases and
Individuals: The generalization ability of AF detection algo-
rithms based on machine learning and deep learning is limited
to different databases and individuals. ECG signals can differ
between individuals and databases, as shown in Fig. 2, where
ECG shape has differences from different individuals. The data
from these two databases were collected using different mon-
itoring devices, and the amplitude of the 2017 Challenge data
was not converted to standard units. The differences between
individuals and monitoring devices pose a challenge to the gen-
eralization ability of machine learning and deep learning-based
AF detection models.

Ma et al. [68] proposed an AF detector based on the integration
of results from the convolutional neural network (CNN) in a sup-
port vector machine (SVM). When the model was trained using

TABLE III
RESULTS OF AF DETECTION COMBINED CNN WITH SVM FROM DIFFERENT

GROUPING FORMS ON THE MIT-BIH AF DATABASE

5-fold cross-validation on the MIT-BIH AF database, the data
were divided into five groups based on recordings and stratified
sampling. The results shown in Table III indicate that personal
ECG differences can affect the performance of the model.

Table IV demonstrates the performance of different AF de-
tection algorithms on independent datasets. The performance of
AF detection algorithms [68], [69], [70], [71] decreases when
tested on datasets with distinct differences between training
and testing databases, particularly on datasets from different
sources. The MIT-BIH AF database contains only resting data
from 23 patients, mostly consisting of AF and normal sinus
rhythm (N) episodes. AF detectors trained on the MIT-BIH
AF the PhysioNet/CinC Challenge 2017 and the MIT-BIH ar-
rhythmia database, which contain other arrhythmia data and
ambulatory data, respectively. Models trained by Zhang et al.
[71] on the Wearable database performed well when tested on
the PhysioNet/CinC Challenge 2017 dataset despite a decrease
in performance. This suggests that the diversity of data used for
model training affects model performance, particularly for deep
learning models, which are more dependent on waveform data.

2) The Interference With Other Rhythm Abnormalities:
The open-access AF database usually contains healthy indi-
viduals and AF patients. It rarely contains ECG signals with
abnormal rhythms. Clinically, the ECG recordings monitored
are not only from AF patients but also from patients with
other arrhythmias, such as atrial tachycardia, premature beats,
etc. These arrhythmias patients also have irregular rhythms.
As shown in Fig. 3, the delta RR interval distribution from
sinus rhythm is approximately a straight line, while the delta
RR interval distributions from AF and premature are similar.
Therefore, using only RR interval analysis can lead to confusing
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TABLE IV
PERFORMANCE OF METHODS TESTED ON THE INDEPENDENT DATABASES

Fig. 3. Example of PAC confusing AF. (a) 60-min ECG. (b) Distribution
of delta RR interval.

TABLE V
RESULTS OF 10-FOLD CROSS-VALIDATION FROM SVM AND RR INTERVAL

ON WEARABLE DATABASE

other arrhythmias and AF. Typically, AF/sinus rhythm detection
accuracy is high, but accuracy in identifying AF/non-AF is
lower. To evaluate the performance of an AF detection model
based on reference [68], this work selected 10 non-AF record-
ings (including 2 premature beats) and 10 AF recordings from
the wearable database and performed 10-fold cross-validation.
The results are presented in Table V. Specifically, fold 2 and 7
contained premature beats, with corresponding sensitivities of
75.38% and 83.90%. When applying the AF recognition model

TABLE VI
TEST RESULTS FROM SVM AND RR INTERVAL ON WEARABLE DATABASE

trained on the MIT-BIH AF database in reference [68] to the
wearable database, the test results are shown in Table VI. When
the recordings are obtained from patients without AF or prema-
ture beats, the model’s performance is poor, with test accuracies
of 88.10% and 71.86% for Recordings 1 and 4, respectively.

In addition, the waveforms of AF and atrial flutter (AFL)
are very similar. When AF occurs, the P wave disappears and
a series of f waves appear on the ECG, and the RR interval is
absolutely irregular. When AFL occurs, the P wave disappears,
and several series of F waves appear on the ECG. However, the
RR interval may be absolutely irregular or relatively regular
when AFL occurs. As shown in Fig. 4, it is the wave and RR
interval of N, AF and AFL. At present, many AF detection
algorithms, especially the AF analysis algorithms based on
ventricular activity, cannot identify AF from AFL. Many
scholars group AF and AFL into one category when they
develop AF detection algorithms [72], [73], [74].

3) Lack of ECG With Long-Term Wearable Paroxysmal
AF From the Open Database: As shown in Table II, it is the
detail of AF from the open database. Most of the AF record-
ings were short-term and collected in a rest environment. The
number of wearable AF recordings is less. Most of the record-
ings collected from the practical application environment are
paroxysmal AF, usually from wearable devices. The annotated
long-term wearable paroxysmal AF recordings are needed to
develop an AF detector with good performance.

B. The ECG Differences Between Wearable and Resting
ECGs

Wearable ECG monitoring devices are usually highly suscep-
tible to noise interference and motion artifacts. When monitoring
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Fig. 4. Wave and RR interval of N, AF, AFL (N and AFL from 04908
recording of the MIT-BIH AF database, AF and AFL2 from 203 recording
of the MIT-BIH arrhythmia database). (a) N. (b) AFL1. (c) AF. (d) AFL2.

Fig. 5. Uncertainty ECG segment in wearable ECGs.

AF using wearables, there may be a significant number of un-
certain ECG fragments that contain only rhythm information, or
neither rhythm nor waveform information, as depicted in Fig. 5.
False detections of AF in wearable ECGs can be attributed to

Fig. 6. Examples of AF recordings screening. (a) Delta RR interval
and Lorenz plot from AF. (b) Delta RR interval and Lorenz plot from N.
(c) Delta RR interval and Lorenz plot from PAF.

two factors: the impact of rhythm information and waveform
information from wearable signals.

1) The Influence of Rhythm Information From Wearable
Signals: R peak is the most significant characteristic of the ECG
signal. The irregularity of the RR interval is the most obvious
feature to judge AF, which is also the main method to detect
wearable AF. The precise detection of the R peak is essential
for screening AF in wearable ECG continuous monitoring.
Fig. 6 illustrates examples of AF recording screening, where
suspected AF can be detected based on the distribution of the
ΔRR interval. The distribution of ΔRR interval for non-AF
recordings appears as a straight line, clustered around 0. Con-
versely, the distribution of ΔRR interval for suspected AF is
not centered around 0, but typically ranges between −1 and 1.
The Lorenz plots from AF and PAF recordings are not clustered
at 0.

Many AF detection algorithms are based on the heart rhythm
information from ECG signals to identify the AF. Ma et al.
[62] trained various AF detectors on the MIT-BIH AF database.
When these AF detectors were tested on the CPSC2021
database, they exhibited varying levels of performance, and the
testing accuracy decreased for all of them. The RR interval
feature-based AF detector demonstrated better testing perfor-
mance than the deep learning-based AF detector, indicating that
machine learning-based AF detectors have better generalization
performance on limited training data.
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Fig. 7. Example of a non-AF ECG signal judged as AF. (a) Wearable
signal. (b) Delta RR interval. (c) Lorenz plot.

TABLE VII
PERFORMANCE OF AF DETECTOR WITH DIFFERENT QRS DETECTION

METHODS

The QRS complex wave detection algorithm has a great
impact on the AF detector based on heart rhythm information. In
wearable signals, poor signal quality will lead to false detection
of QRS complex waves, resulting in misjudgment of AF. Fig. 7
shows the 50-s non-AF ECG signal. The QRS complex wave
detection algorithm proposed by Pan Tomkin [58] is used to
detect QRS complex waves in the 50-s non-AF ECG signal.
The 50-s non-AF ECG signal will be judged as AF from the
distribution of ΔRR interval and Lorenz plot.

The reference [68] trained an SVM-based AF classifier us-
ing RR interval features. In this work, different QRS complex
wave detectors were selected to obtain the RR interval, and the
SVM-based AF classifier was retrained to compare the effects
of different QRS complex wave detectors on AF detection.
The QRS complex waves detection algorithms include the QRS
complex waves detection algorithm proposed by Pan et al.
[75], the improved QRS complex waves detection algorithm
proposed by Paoletti et al. [76]. The labeled QRS complex waves
directly were obtained on the MIT-BIH AF database. The 5-fold
cross-validation was carried out on the MIT-BIH-AF database.
We divided 22 recordings from the MIT-BIH AF database into
5 folds, and each fold is 3 or 4 recordings for testing, leaving 18
or 19 recordings alone for training, the result is as TableVII. In

TABLE VIII
TEST RESULT OF AF DETECTOR WITH DIFFERENT QRS DETECTION

METHODS

Fig. 8. Wearable ECG signal polluted by noise.

addition, the CPSC2021 database was taken as an independent
test set the test results are shown in Table VIII.

MIT-BIH AF database is collected in the resting environment,
the QRS complex waves detection has almost no influence on
AF detection on the MIT-BIH AF database. CPSC2021 database
from the wearable database with noise. When the improved QRS
complex wave detector proposed by Paoletti et al. was used, the
accuracy of AF detection was higher on the CPSC2021 database,
implying that the QRS complex wave detectors have an influence
on the results of AF detection for wearable ECGs.

2) The Influence of Wave Information From Wearable
Signals: The P-waves disappearing, and F waves appearing in
atrial activity are the basis for clinicians to diagnose AF. But P-
wave and F-wave have small amplitude, and they are extremely
susceptible to noise interference. Due to many complicated
interferences from daily activities, this situation can be worse
in the wearable ECG. As shown in Fig. 8, it is a 20-s wearable
ECG signal. The signal cannot identify P or F waves that are
discernable in heartbeats. When the P or F waves are drowned
out by noise, there is no way to determine if the heartbeat is AF.

IV. WEARABLE AF ANALYSIS AND PROCESSING METHODS

A. The Analysis of Effective ECG Signals for Wearable
AF Analysis

Different environmental noises, motion artifacts, and ECG
signals are mixed in real-time and wearable environments, re-
sulting in complex and variable signal quality. The ECG signal
even becomes pure noise, losing diagnostic value. Therefore, it is
imperative to evaluate the signal quality and screen out clinically
effective ECG signals for AF analysis. At present, there is no
unified signal quality evaluation standard. The evaluation criteria
of signal quality are different according to different ECG signal
analysis requirements. For the screening of AF, only visible QRS
complexes are required. P wave and QRS complex are visible
from the perspective of AF diagnoses.
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TABLE IX
THREE CLASSES OF WEARABLE ECG SIGNAL QUALITY

TABLE X
PERFORMANCE OF QUALITY ASSESSMENT ALGORITHMS

There are many ECG signal quality evaluation al-
gorithms, but the databases about ECG quality evalua-
tion are lacking. The PhysioNet/Computing in Cardiology
Challenge 2011 (cinc2011)(https://www.physionet.org/content/
challenge-2011/1.0.0/) [77]. The datasets are divided into three
categories: acceptable group, indeterminate group and unaccept-
able group. Andrea Nemcova et al. [78] published a database:
the Brno University of Technology ECG Quality Database
(BUT QDB) (https://physionet.org/content/butqdb/1.0.0/). The
database was grouped into three quality classes. The details of
the quality assessment grades are shown in Table IX. Class A
and B signals are suitable for scanning AF. Class A signals are
suitable for the diagnosis of AF.

Present ECG signal quality evaluation algorithms can be
divided into 3 categories. The first is ECG signal quality as-
sessment based on ECG morphological features [79], [80]. The
second is to evaluate the signal quality based on the match-
ing results from different QRS complex wave detection algo-
rithms[81], [82]. It can only screen signal segments containing
clear QRS, which is suitable for screening AF. The third is the
ECG quality assessment algorithm based on ECG waveforms
and deep learning [83], [84], [85], [86], [87], [88]. Table X
demonstrates the performance of quality assessment algorithms.
In addition, Markus et al. presented a machine learning-based
signal quality assessment for the early detection of silent AF,

Fig. 9. Features analysis of ECG availability based on AF diagnoses
and scanning. (a) Features analysis of ECG availability based on AF di-
agnose. (b) Features analysis of ECG availability based on AF scanning.

which yielded a high correlation of 0.60 with the clinical expert
ratings during testing [89].

This work performed the feature analysis based on ECG signal
morphology on the BUT QDB Database. Eight features of ECG
availability were analyzed for AF diagnoses, including sSQI,
kSQI, ApEn, SampEn, FuzzyEn, MSEn, MFEn, and RCMFEn
[90], [91], [92], [93], [94], [95], [96]. Twelve features of ECG
availability were analyzed for AF scanning, including sSQI,
kSQI, PLI-SQI, basSQI, pSQI, HpSQI, LpSQI, ApEn, SampEn,
FuzzyEn, MSEn, MFEn [90], [91], [92], [93], [94], [95], [96].
As shown in Fig. 9, it is the features analysis of ECG avail-
ability based on AF diagnoses and scanning. At the same time,
GbSQI [97] is an ECG signal quality evaluation method. It was
calculated on the ECGs of three different signal qualities from
the BUT QDB database. U3 [98], UNSW [99], DOM [100], and
OKB [101] detectors were recommended for calculating GbSQI
in the [97]. Fig. 10 shows results based on GSQI from the BUT
QDB database. Class A and B signals can be picked out by
GbSQI.

B. The QRS Complex Waves Detection for Wearable AF
Analysis

The traditional QRS complex wave detection algorithm has
been studied for many years, and a high detection rate has been
achieved in ECG signals from a resting state. ECG signals
are often submerged by noise in wearable ECG continuous
monitoring. QRS complex wave detection from wearable ECG
signals is still tricky and full of challenges. The research results
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Fig. 10. Results based on GSQI from BUT QDB database.
(a) Class A (GSQI = 0.8182). (b) Class B (GSQI = 0.987). (c) Class
C (GSQI = 0.3125).

from a study show that the best recognition rate of the common
QRS complex wave detection algorithm is only 80% in wearable
noisy ECG databases [102]. The CPSC 2019 aims to encourage
the development of algorithms for challenging QRS complex
wave detection from short-term single-lead ECG recordings,
usually with low signal quality [26]. The best QRS complex
wave detection accuracy was 92.1% from CPSC 2019.

The AF analysis from the wearable continuous ECG detection
was combined with ECG signal quality assessment to determine
the reliability of the QRS complex wave detection. For AF
screening, the final position of QRS complex waves can be
determined by voting from several QRS complex wave detection
algorithms. For ECG signals from multiple leads, ECG infor-
mation of different leads can be fused to detect QRS complex
waves.

C. The Wearable AF Detection

1) Reducing the Difference From the ECG Signal: The
ECG recordings are personality differences from the different
individuals and databases. The poor generalization capability
can be inevitable when tested on wearable ECGs which limits
the developed AF detectors to be robustly used in wearable mon-
itoring situations. Zhang et al. [71] proposed training strategies
for deep learning-based AF detection. He used the Fast Fourier
transform (FFT) and Hanning window-based filter to suppress
the influence of the individual difference and trained the model

Fig. 11. Frame of the AF detector based on domain-adaptation.

on the wearable ECG data to improve the robustness of the
model.

The main goal of transfer learning is to exploit the similarity
between different domains to improve the performance of the
model in the target domain. The generalization ability of the
model can be improved by the feature space alignment of data
between different databases. As shown in Fig. 11, it is the frame
of the AF detector based on domain adaptation. Jin et al. [103]
propose a novel domain adaptive residual network to detect AF
of unlabeled datasets with the aid of detection knowledge of
labeled datasets.

2) Excluding the Interference From Other Arrhythmia
Diseases: The AF detector based on RR interval easily mis-
judges non-AF patients with irregular RR intervals as AF.
Those with frequent premature beats have a high probability
of AF. However, the rhythm of premature contractions is eas-
ily misjudged as AF, and the interference of premature con-
tractions on AF detection should be excluded. Ma et al. [62]
proposed a multi-step AF detection strategy integrating rhythm
and P information. In the multi-step AF detection strategy,
the premature beats rejection strategy on PAF detection was
presented.

3) Developing Interpretable AF Detection Algorithms:
The ability of artificial intelligence-based AF detection meth-
ods to meet the clinical interpretability is a crucial concern
in the clinical application. Atrial and ventricular activity-based
AF analysis methods detect AF through waveform information
(P-wave) and rhythm information (RR intervals) respectively,
therefore AF detection algorithms based on atrial and ven-
tricular features and machine learning can also meet the need
for AF interpretability. However, most deep learning-based AF
detection algorithms are unable to explain the reasons for the
model’s decisions. Techniques like saliency maps and attention
maps offer the potential to shed light on the decision-making
process by visually highlighting the specific regions or features
that the model focuses on during predictions. For instance,
Khurshid et al. [104] trained a convolutional neural network
(ECG-AI) to predict the risk of incident AF over five years and
employed saliency maps to demonstrate that the P-wave and
its surrounding regions had the most significant influence on
AF risk assessment of ECG-AI model. Similarly, Hicks et al.
[105] introduced the electrocardiogram gradient class activa-
tion map technique, which generates attention maps to provide
explanations for deep learning-based decision-making in ECG
analysis.
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TABLE XI
AF ANALYSIS AND CLINICAL APPLICATION BASED ON MEDICAL BIG DATA

It is important to note that while interpretability techniques
offer valuable insights, they also possess certain limitations.
Achieving interpretability in deep learning-based AF detection
algorithms remains an ongoing area of research.

V. CLINICAL MONITORING OF ATRIAL FIBRILLATION

Many scholars have applied artificial intelligence algorithms
to the clinical data analysis of AF. The clinical data is usually
extensive, which brings a lot of work to clinicians. The clinical
analysis algorithm based on artificial intelligence can reduce the
burden on doctors. This work introduces the AF analysis based
on big clinical data and AF monitoring in prospective settings in
this section. Next, clinical applications are described, including
early risk screening, home and clinical management.

A. AF Analysis Based on Big Clinical Data

1) AF Classification From the 12-Lead ECG: Deep Learn-
ing can detect new-onset AF in patients based on ECG, which
can help identify patients with AF-related complications such as
stroke. The performance of AF analysis and application based
on big medical data is shown in Table XI, which implies that
AF detection algorithms based on artificial intelligence can be
used as the solution in AF management. Hannun et al. [106]
developed a deep neural network to classify 12 rhythms, in-
cluding AF using 91232 single-lead ECGs from 53549 patients
and published in Nature Medicine. Ribeiro et al. [107] trained
a convolutional neural network similar to the residual network
on more than 2 million labeled exams to detect six arrhythmias,
including AF. In 2019, Attia et al. [108] presented an artificial
intelligence-enabled ECG algorithm to recognize AF on 180922
patients and 649931 normal sinus rhythm ECGs. In 2021, a CNN
was trained by Hughes et al. [109] to predict the presence of 38
diagnostic classes of 992748 ECGs from 365009 adult patients.
For AF, the CNN F1 score is 0.847, and the cardiologist F1 score
is 0.881. Yong et al. [110] used four residual blocks of the neural
network to learn AF features on several non-restricted ECG
datasets, including the PTB-XL ECG dataset (21837 12-lead
ECGs); the Chapman ECG dataset 10605 12-lead ECGs); and
the CinC 2017 (8528 single-lead ECGs). Raghunath et al. [111]

trained DNN on 1.6 M resting ECG traces from 430000 patients.
Baek et al. [112] used RNN on 3703 ECGs for analysis. Park
et al. [113] verified the SE-ResNet-based AF detector on 13241
12-lead ECG recordings.

2) AF Risk Prediction From the 12-Lead ECG: Because
of AF prevalence and clinical importance, it is a good case
for the development of new risk prediction algorithms. Risk
prediction models have been developed to identify patients at
risk of AF but with limited success [114] (e.g., C-statistic, 0.765
in CHARGE-AF [115]). Three recent works by Christopoulos
et al. [116], Raghunath et al. [117] and Biton et al. [118] made use
of a DL approach using the raw 12-lead ECG signal as input for
the task of AF risk prediction. These recent experiments used the
world’s largest existing databases of raw 12-lead ECG with up to
>1M recordings for the largest experiment by Biton et al. [118]
Interestingly, it was demonstrated that a DL approach for this
task was performing the same as a feature engineering approach
[119]. However, all these studies have a significant limitation:
the definition of their clinical endpoint. Indeed, AF as a clinical
endpoint was defined as a newly documented AF diagnosis
after a follow-up 12-lead ECG, or documented within a single
hospital electronic medical record. Since patients may change
hospital/health providers with time and hospital databases lack
clinical information from primary care it makes the clinical
endpoints weak. Also, all the presented studies lack the gen-
eralization performance of their models on external datasets.

B. AF Monitoring Based on Wearable ECG Device in
Prospective Settings

AF is an insidious disease, and individuals at risk of AF
require ongoing monitoring for AF screening to enhance the
detection of paroxysmal and new-onset AF. This section pro-
vides an overview of AF monitoring based on wearable ECG in
prospective settings, including wearable AF monitoring devices
and AF detection based on wearable ECG devices.

1) Wearable AF Monitoring Devices in Perspective Set-
ting: Grond et al. [120] conducted a prospective, multicenter
cohort study involving 11135 patients with ischemic stroke.
They found that 72-hour Holter ECG monitoring detected more
silent AF than 24-hour monitoring. Similarly, Alves et al. [121]
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conducted an 11-month prospective study with 67 patients with
acute ischemic stroke. By utilizing an extended Holter recorder
for up to 6 days, they observed a higher detection rate of
new-onset paroxysmal AF. Furthermore, Kwon et al. [122]
conducted a prospective single-center cohort study involving
210 patients with clinically indicated AF. They compared the
effectiveness of a 72-hour single-lead ECG monitoring with an
adhesive patch-type device to a 24-hour Holter test and found
that the former improved the detection rate of AF. Overall,
these studies highlight the potential of wearable ECG devices
for AF monitoring in prospective settings, leading to improved
detection rates of paroxysmal and new-onset AF.

2) AF Detection Based on Wearable ECG Device in a
Perspective Setting: Handheld ECG monitoring devices have
gained significant usage in primary care, and several prospec-
tive studies have validated their performance in detecting AF.
Orchard et al. [123] conducted a screening of 2467 individuals
for AF using a smartphone electrocardiograph (iECG). The
ECG automated algorithms demonstrated a sensitivity of 95%
and specificity of 99%. Desteghe et al. [124] evaluated two
handheld single-lead ECG devices, namely MyDiagnostick and
AliveCor, for AF screening in hospital populations at increased
risk (cardiology or geriatric wards). The sensitivity and speci-
ficity were reported as 81.8% and 94.2% for MyDiagnostick
in cardiology wards, 54.5% and 97.5% for AliveCor in cardi-
ology wards, 89.5% and 95.7% for MyDiagnostick in geriatric
wards, and 78.9% and 97.9% for AliveCor in geriatric wards.
William et al. [125] monitored 233 patients using the AliveCor
Kardia Mobile (KM) and its algorithm. The KM algorithm
classified 59% as sinus rhythm (SR), 22% as possible AF, 17%
as unclassified, and 2% as unreadable. The study emphasized
that the current performance of the KM algorithm renders the
device inadequate as a standalone application and necessitates
evaluation by physicians. In 2020, a prospective multi-center
validation study was conducted in an inpatient hospital setting
[126]. The study involved 439 single-lead Intelligent ECGs in
200 patients from three tertiary centers. Using the KardiaBand,
the sensitivity and specificity were determined as 94.4% and
81.9% respectively, with a positive predictive value of 54.8%
and a negative predictive value of 98.4%. Despite potential future
improvements in automated algorithms, physician involvement
is likely to remain crucial when assessing the utility of these
devices for arrhythmia screening.

The 24-hour patch ECG monitoring device is a portable device
widely utilized in home monitoring for individuals at high risk
of AF. It has undergone validation through some prospective
studies. In 2021, Santala et al. [127] conducted a study with 73
cases of AF and 86 cases of sinus rhythm. They employed an
mHealth arrhythmia monitoring system, comprising a heart rate
band ECG, a mobile phone app, and automated AF detection.
The accuracy of AF detection from the heart belt ECG recording
was found to be high at 97.5%, with a sensitivity of 100% and
specificity of 95.4%. In another study by Santala et al. [128]
in 2022, patients (N = 178) with AF (n = 79, 44%) or sinus
rhythm (n= 99, 56%) were recruited. The mHealth patch device
was used for 24-hour heart rate variability (HRV) monitoring in

these populations to monitor and automatically analyze AF. The
subject-based AF detection accuracy was reported as 97.2%,
with a sensitivity of 100% and specificity of 94.9%. The 24-hour
patch ECG monitoring device demonstrates relatively high per-
formance in detecting AF among individuals in sinus rhythm. It
is important to note that these patch AF detection performances
were observed in selected populations of AF and sinus rhythm,
and the performance of these devices for AF detection in the
presence of other rhythm disturbances cannot be adequately
described.

C. Early Risk Screening and Home Management of AF

Wearable technology and artificial intelligence are being used
for AF risk screening and home management. Mobile Health
(mHealth) and TeleCheck-AF are entering the life of ordinary
families.

In 2016, Steven et al. [129] designed a home-based trial using
wearable sensors for asymptomatic atrial fibrillation in a targeted
population. The mHealth screening to prevent strokes (mSToPS)
trial, and initiated the world’s first randomized controlled trial
of mHealth for the management of atrial fibrillation. In 2017,
THickey et al. [130] evaluated the utility of mHealth ECG heart
monitoring for the detection and management of AF in clinical
practice, and verified that mHealth self-monitoring is a feasible
and effective mechanism for enhancing AF/AFL detection that
improves the quality of life. In 2019, Guo et al. [131] evalu-
ated mHealth for improved screening, patient involvement and
optimizing integrated care in AF. The mAFA (mAF-App) II
randomized trial verified that mHealth can reduce AF-related
stroke/systemic thromboembolism, all-cause death, and hospi-
talizations. In 2020, Linz et al. [132] reported the TeleCheck-AF
project on remote app-based management of AF during the
COVID-19 pandemic. The remote rate and rhythm monitoring
around teleconsultation by the TeleCheck-AF approach may
be an alternative to traditional face-to-face consultations in the
future. In 2021, Yao et al. [133] found that mHealth technology–
based integrated care reduced meaningful clinical adverse
events in older patients with AF and multimorbidity vs. usual
care.

These studies demonstrate the application prospect of wear-
able devices in the early screening and management of AF,
which can achieve timely diagnosis and effective treatment for
high-risk AF patients, and early risk intervention for low-risk
people to prevent the disease before it develops.

D. Clinical Management of AF

1) AF Burden Estimation From Long Continuous ECG:
Characterization of patient clinical phenotype is central to enable
personalized medicine. In the context of AF phenotyping, this
can be enhanced by exploring the relationship between AF
features such as the AF Burden (AFB) and clinical endpoints,
for example, stroke. Chen et al. [134] and Go et al. [135] showed
that AFB is highly correlated with a higher risk of stroke among
other cardiological and neurological outcomes. Also, Han et al.
[136] studied the use of daily AFB from continuous cardiac
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implantable electronic device tracings for stroke prediction.
This motivates us to estimate the AFB measure accurately.
Furthermore, a large proportion of AF patients are paroxysmal
or asymptomatic and thus go undetected since these patients are
harder to identify from short ECG recordings [137]. To better
understand how AF episode patterns are captured, several studies
have investigated the regularity and length of AF events across
individuals [138]. Moreover, it was shown that diagnostic yield
increases with prolonged duration and an increased number
of screenings [139], [140]. However, long-term screening can
significantly increase the workload of the medical staff. Nose-
worthy et al. [141] proposed an AI-guided screening approach
for addressing underdiagnosed atrial fibrillation patients which
might not be addressed in current practice and showed increased
detection of AF using a guided AI approach over usual practice.
Biton et al. [60] developed a recurrent DL model denoted ArNet2
builds upon ArNet [142] to analyze long-term continuous ECG
recordings for AF diagnosis and phenotyping using robust AFB
estimation. ArNet2 demonstrated state-of-the-art performance
in detecting AF events with F1 = 0.92 and was very robust in
estimating the AFB with an absolute error of |E_AF (%)|= 0.32.

2) Monitoring of Atrial Fibrillation Before and After
Surgery: The conventional treatment for AF patients with ob-
vious clinical symptoms is catheter radiofrequency ablation
(CAP). To formulate AF treatment plans, it is necessary to
quantify the type and severity of AF. In addition, the postop-
erative recurrence rate of AF is very high, and continuous ECG
monitoring is required [16].

According to research from Sanhoury [143], patients with
persistent AF with increased left atrial volume and decreased
function have a longer ablation time and higher postoperative
recurrence rate. Tilz et al. [144] counted the recurrence of
AF radiofrequency ablation within ten years. The recurrence
rate after ten years of single radiofrequency ablation was as
high as 67.1%, and the recurrence rate of multiple ablations
was 37.3%. In addition, the recurrence rate is affected by the
severity of AF. Efremidis et al. [15] conducted a long-term
follow-up of 520 patients with AF who underwent a single
radiofrequency ablation procedure, and the recurrence rate at
1, 2 and 5 years after paroxysmal AF. They were 23.1%, 27%,
and 28.7%, respectively, and the recurrence rates at 1, 2, and
5 years after persistent /permanent AF increased to 31.3%,
36.6%, and 38.4%. The main reasons affecting the postoper-
ative recurrence rate are the differences in the surgical plan
and the degree of disease. If AF patients can be continuously
monitored before surgery, accurately quantifying the severity
of AF, will significantly reduce the recurrence of AF. Wearable
ECG continuous monitoring of patients after AF ablation re-
sulted in closer patient management, improved outcomes, and
similar total costs.

Zvuloni et al. [145] developed a feature engineering ap-
proach to evaluate whether CAP was successful without a long
follow-up assessment for AF recurrence. The authors obtained
an AUROC of 0.64 using pre-CAP ECG and an AUROC of 0.74
using post-CAP ECG. Ma et al. [62] developed a multi-step
paroxysmal atrial fibrillation scanning strategy in long-term
ECGs, hoping to help the clinical management of AF.

VI. FUTURE DIRECTIONS

Based on the past and current studies on ambulatory AF mon-
itoring technology (such as the wearable AF monitoring device,
AF analysis algorithm for wearable AF monitoring device and
AF clinical management), we highlight key challenging prac-
tical issues of existing AF monitoring technology. We further
present future research directions for intelligent AF monitoring.

A. AF Screening

AF screening is typically targeted toward middle-aged and
elderly individuals in a home setting, which places certain
demands on AF monitoring devices. First and foremost is the
issue of device comfort to avoid itching, festering, and other
problems during long-term use. Secondly, the ease of use of
contact devices must be improved. In out-of-hospital healthcare
scenarios where there may be a lack of trained professionals,
incorrect placement of electrodes and other components can
cause the device to malfunction.

The monitoring device for AF screening will be convenient
and comfortable under the premise of a high-reliability ECG
signal. The monitoring device for home AF monitoring will
be developed towards non-contact monitoring to achieve early
screening for AF.

B. AF Diagnosis

AF diagnosis needs accurate and reliable AF detection. It is
essential to identify effective ECG to AF analysis and locate the
R peak to monitor heart rate in the presence of noise interference.
Thus, ECG signals quality evaluation and the fusion of multiple
QRS complex wave detection algorithms or multi-lead fusion
can be utilized.

Developing an AF detection model with generalization ability
can enhance the accuracy of detection across separate sets
of tests. Future research in developing an AF diagnosis al-
gorithm must include an assessment of the algorithm perfor-
mance across multiple external test sets that include a diversity
of ethnic/geographic groups, age and sex. Interpretability of
deep learning-based AF detection methods is also an ongoing
direction, which enhances the application and acceptance of
algorithms in clinical practice and promotes safer, more reliable
and sustainable medical practices.

In addition, there is a need to establish a precisely labeled
clinical database for paroxysmal AF and develop suitable AF
burden assessment algorithms for long-term ECG monitoring,
which can help optimize individualized treatment plans for AF
patients.

C. AF Risk Prediction

Due to the high prevalence of AF, AF risk prediction is
crucially important. Currently, there are relatively few and im-
mature AF prediction algorithms available. Future AF prediction
algorithms can be personalized based on an individual’s phys-
iological characteristics and medical history. This personalized
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approach can improve the accuracy and specificity of AF pre-
diction, thereby providing better guidance for clinical treatment
and prevention.

In the future, intelligent ECG monitoring will significantly
contribute to the continuous monitoring of AF, the management
of patient information, and the construction of disease risk early
warning models. The purpose of early detection and treatment is
to prevent the deterioration of the patient’s condition, effectively
save medical costs, reduce the burden on families, and alleviate
the problem of insufficient medical resources.

VI. CONCLUSION

The development of portable and comfortable ECG moni-
toring devices and the design of high-precision non-invasive
solutions for automatic detection and prediction of AF and its
types have a great demand in the field of intelligent medicine,
especially in the field of AF management. In this work, we
reviewed the ambulatory monitoring techniques currently used
in AF management, the challenges associated with ECG data
processing brought about by ambulatory monitoring technology,
such as analysis of available ECG signals and the impact of
QRS detectors on AF analysis, and the AF analysis algorithm.
Moreover, we discussed the application of the AF analysis
algorithm in clinical Big Data and clinical management of AF
and proposed the future research directions of AF monitoring
technology.
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