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Abstract
Aim: This study aimed to classify quiet sleep, active sleep and wake states in preterm 
infants by analysing cardiorespiratory signals obtained from routine patient monitors.
Methods: We studied eight preterm infants, with an average postmenstrual 
age of 32.3 ± 2.4 weeks, in a neonatal intensive care unit in the Netherlands. 
Electrocardiography and chest impedance respiratory signals were recorded. After 
filtering and R- peak detection, cardiorespiratory features and motion and cardiorespi-
ratory interaction features were extracted, based on previous research. An extremely 
randomised trees algorithm was used for classification and performance was evalu-
ated using leave- one- patient- out cross- validation and Cohen's kappa coefficient.
Results: A sleep expert annotated 4731 30- second epochs (39.4 h) and active sleep, 
quiet sleep and wake accounted for 73.3%, 12.6% and 14.1% respectively. Using all 
features, and the extremely randomised trees algorithm, the binary discrimination be-
tween active and quiet sleep was better than between other states. Incorporating mo-
tion and cardiorespiratory interaction features improved the classification of all sleep 
states (kappa 0.38 ± 0.09) than analyses without these features (kappa 0.31 ± 0.11).
Conclusion: Cardiorespiratory interactions contributed to detecting quiet sleep and 
motion features contributed to detecting wake states. This combination improved the 
automated classifications of sleep states.
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1  |  INTRODUC TION

Sleep is one of the most important factors in the neural 
development of preterm infants. This implies that continuous 
sleep monitoring may provide an indicator of neural development 
over time.1,2 Previous research has shown that sleep impacts the 
physiology of preterm infants. For example, heart rate variability 
and respiratory activity have been reported to change during 
sleep.3,4 Adult sleep is classified into three states: rapid eye 
movement (REM), non- rapid eye movement and wake, based 
on manual scoring from polysomnography.5 The non- rapid eye 
movement is further divided into three sleep states: N1, N2 and 
N3. Sleep scoring in preterm infants is often based on behavioural 
observation. This is because their brain is at a premature 
developmental stage, where identifying rapid eye movement 
and non- rapid eye movement with absolute clarity is challenging. 
Hence, the sleep classifications of preterm infants are limited to 
active sleep, quiet sleep and wake.6

Sleep states in infants have been associated with specific states 
of development. Hence, the distribution of sleep states can serve as 
an indicator of brain maturation in preterm infants.7 Active sleep is 
necessary for the early development of the sensory and hippocam-
pal systems required for memory creation.8 Quiet sleep is important 
for the pre- consolidation of learning and memory development from 
sensory experiences, including vision, hearing and touch. In addition, 
quiet sleep impacts brain size and plasticity in infants as they tran-
sition to adulthood.9 Over time, preterm infant sleep state patterns 
change, with a reduction in active sleep and a concomitant increase 
in quiet sleep and wake.9

The annotation of various sleep states is aided by a variety of 
physiological measures, such as electroencephalography, electro-
myography, electrocardiography (ECG), respiration and oxygen sat-
uration.5 The process of sleep scoring, based on polysomnography, 
involves an expert scorer who visually analyses a series of 30- second 
epochs of multichannel signals and assigns each epoch to a specific 
stage of sleep. However, these methods are time- consuming and 
costly. More importantly, many signals, such as electroencephalog-
raphy, amplitude- integrated electroencephalography and electro-
myography, are not routinely measured in the neonatal intensive 
care unit. Adding electrodes to measure these signals would signifi-
cantly increase the risk of skin damage in preterm infants.1 Another 
validated approach for scoring sleep states in preterm infants is be-
havioural observation.10 Otte et al. analysed agreements between 
the behavioural and polysomnography sleep scoring approaches in 
infants under 1 year of age. The authors found strong agreement, 
with a Cohen's kappa value of ≥0.74, particularly when they com-
pared wake, active sleep and quiet sleep annotation with wake: 
REM/N1/N2, and N3 sleep (kappa = 0.85).10 However, behavioural 
sleep scoring involves manual annotation that requires considerable 
effort. Therefore, it is imperative to analyse preterm infant sleep 
patterns by employing existing sensors already installed in the neo-
natal intensive care unit. These include ECG and chest impedance 
respiratory signals.

Machine learning techniques that are based on cardiorespiratory 
parameters have been employed to classify infant sleep.11 For exam-
ple, Harper et al. used cardiorespiratory signals to determine the sleep 
states of full- term infants and achieved an accuracy of 80%.12 Werth 
et al. initially achieved a kappa score of 0.30 in classifying sleep states 
in eight preterm infants using features extracted from ECGs and a 
random forest classifier.9 Subsequently, the same authors slightly 
improved the kappa score to 0.33 by implementing a convolutional 
neural network.13 Sentner et al. reported a kappa score of 0.24 when 
detecting sleep states using heart rate, respiratory rate and oxygen 
saturation that was directly obtained from the patient monitor.14 
Nevertheless, the existing sleep scoring models have relatively low 
performance and are not ready for use in clinical practice.

Extracting more informative features from cardiorespiratory 
signals may provide additional information to improve sleep state 
classifications in preterm infants. In this study, we considered the in-
formation related to body movements and cardiorespiratory interac-
tions. Cardiorespiratory interaction (CRI) is the interaction between 
cardiac and respiratory dynamics.15 For each 30- second epoch, this 
interaction is constructed by identifying the heartbeats and deter-
mining the amplitude of respiratory signal at the corresponding time 
stamp. Our previous studies demonstrated an association between 
cardiorespiratory interaction and preterm infant sleep state using 
the visibility graph method.16 In addition, an infant's body move-
ment is highly correlated with sleep and wake states and can be well 
estimated by quantifying the motion artefacts modulated in ECG 
and respiratory signals.16,17 Peng et al. proposed a method that com-
bined continuous wavelet transform and signal instability indexing 
to quantify body motion in preterm infants using ECGs or respira-
tory signals.18 They obtained an area under the receiver operating 
characteristics value of 0.92. In this study, we proposed extracting 
motion signal features obtained via the motion detection method 
and from the cardiorespiratory interaction signals derived from the 
visibility graph complex network analysis.15

The aim of this study was to improve the sleep classification 
accuracy in preterm infants by incorporating these novel features 
along with the ECG features proposed by Werth et al.19 and the re-
spiratory features commonly used in adult sleep staging.20

Key notes

• This study aimed to verify the feasibility of automated 
classifications of sleep states of preterm infants, 
using cardiorespiratory signals from routine patient 
monitoring.

• A sleep expert annotated 4731 30- second epochs (39.4 h) 
and reported that active sleep, quiet sleep and wake 
accounted for 73.3%, 12.6% and 14.1% respectively.

• We found that using features extracted from motion 
and cardiorespiratory interaction improved the sleep 
state classification performance.
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    |  3ZHANG et al.

2  |  METHODS

2.1  |  Data and sleep annotation

Chest impedance respiratory and ECG data that were routinely 
collected from the patient monitors of eight clinically stable 
preterm infants were analysed. These infants were admitted to 
the neonatal intensive care unit of the Máxima Medical Centre, 
Veldhoven, the Netherlands, in 2012. The mean and standard 
deviation age of the selected infants was 30.0 ± 2.3 weeks of 
gestation and the birth weight was 1680.8 ± 634.3 grams. Their 
mean postmenstrual age during the study was 32.3 ± 2.4 weeks. 
None of the infants exhibited signs or symptoms of neonatal 
seizures. The Ethical Committee of the Máxima Medical Center 
approved the study and the parents of the preterm infants 
provided written, informed consent.

We employed the behavioural sleep annotation system devel-
oped for infants by Otte et al.10 A trained sleep expert annotated 
sleep states in 30- second, non- overlapping windows, based on vid-
eos of the sleeping infants and respiratory signals. The sleep states 
were originally annotated into five categories: quiet sleep, active 
sleep, wake, caretaking and unknown.19 Caretaking epochs were 
defined as the periods when the preterm infants received routine 
care from nurses or neonatologists in the neonatal intensive care 
unit. Unknown epochs were those that could not be annotated, for 
example, if the infants were not in the incubator or were not vis-
ible in the video. A total of 4815 epochs (40.1 h) were annotated 
and active sleep, quiet sleep, wake, caretaking and unknown ac-
counted for 72.0%, 12.4%, 2.5%, 11.4% and 1.7% respectively. Since 
preterm infants are mostly awake during the caretaking stage, we 
merged caretaking and wake into one state and called this wake. 
Unknown epochs were excluded from the analysis. This meant that 
4731 epochs (39.4 h) of data for the eight preterm infants were used 
in this study, with an average recording time of 591 ± 175 epochs 
(4.9 ± 1.5 h). Table 1 shows the distribution of the sleep states in this 
study.

2.2  |  Signal preprocessing

ECG data were recorded at 500 Hz and respiratory data at 16 Hz, 
using chest impedance electrodes from a Philips Monitor Intellivue 
Mx800 (Philips Medical Systems, Baden- Württemberg, Germany). 

To remove noise from the respiratory signals, a 10th- order 
Butterworth bandpass filter (0.005–2 Hz), implemented in Matlab 
(MathWorks, Massachusetts, USA), was used. Subsequently, we 
subtracted the baseline from the respiratory signal obtained using 
a median filter with a 1- second window. For ECG signals, a type- II 
Chebyshev filter (0.001–120 Hz), implemented in Matlab, was 
applied to remove baseline wander. To extract features related to 
heart rate variability, the R- peaks of ECG data were detected using 
an existing QRS detection algorithm (Ralph Wijshoff et al., Noord 
Brabant, The Netherlands).21

As previously stated, the presence of motion artefacts is consid-
ered an indicator of certain sleep states, such as wake. This study ex-
tracted motion signals from both ECG and respiratory signals using 
the combined continuous wavelet transform and signal instability in-
dexing algorithm. Our previous study investigated cardiorespiratory 
interactions in preterm infants using the visibility graph method. 
This method involves constructing a cardiorespiratory interaction 
signal by utilising the timing of the R- peak in each heartbeat from 
the ECG signal and the amplitude of the respiratory signal at the cor-
responding timestamp. Figure 1 illustrates the signal pre- processing 
of raw ECG and chest impedance respiratory signals collected from 
patient monitors. This yielded four signals that were used for feature 
extraction.

2.3  |  Features

Based on previous studies, 34 cardiac features were extracted 
from filtered ECG signals19 and 41 from filtered chest impedance 
respiratory signals.20 As preterm infants have a higher heart 
rate and breathing rate than adults, adaptations were made 
to accommodate such differences in some features. Detailed 
explanations of the cardiac and respiratory features are provided 
in Tables S1 and S2 respectively. In addition, we extracted 20 
new features from the motion and cardiorespiratory interaction 
characteristics, to improve cardiorespiratory- based sleep state 
classification in preterm infants.

From the two motion signals, one derived from the ECG signal 
and one other from the respiratory signal, we extracted 12 motion 
features for each epoch. The sum of all motion values of each epoch 
was computed, where a larger sum corresponded to a stronger 
movement. The standard deviation of motion quantified the vari-
ation in body movement. We also computed the 50th, 75th, 90th 

TA B L E  1  The distribution of annotated sleep states.

Sleep state (30- second 
epoch)

Subject

Mean ± SD1 2 3 4 5 6 7 8

Quiet sleep 145 134 18 111 74 59 24 30 74.4 ± 50.4

Active sleep 455 392 550 491 431 676 211 259 433.1 ± 150.2

Wake 134 75 35 29 164 63 4 167 83.9 ± 63.4

Total epochs 734 601 603 631 669 798 239 456 591.4 ± 174.6
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4  |    ZHANG et al.

and 95th percentiles of the motion values. Table S3 summarises the 
motion features proposed by this study.

Several parameters of the visibility graph network topology con-
structed from the cardiorespiratory interaction time series exhib-
ited significant differences among the preterm infant sleep states.15 
Therefore, we extracted eight features from the cardiorespiratory 
interaction signals. The means and standard deviations of the de-
gree of the cardiorespiratory interaction network were constructed 
using the visibility graph method and the network created with the 
difference visibility graph22 was calculated. The assortative coeffi-
cient is a measure of assortative mixing by degree and it represents 
the skewness in the connections of network nodes.15 The clustering 
coefficient quantified the density of the local clusters within a net-
work. The means and standard deviations of the clustering coeffi-
cient values were calculated for each epoch. The sample entropy of 
the network degrees was computed to quantify the regularity of the 
cardiorespiratory interaction networks. We also extracted features 
from the degree distribution to examine the statistical properties of 
the cardiorespiratory interaction network.15 An overview of the car-
diorespiratory interaction network features is provided in Table S4.

To reduce the high- frequency noise conveyed by features 
that did not reflect changes in the sleep state, the features were 
smoothed using a low- pass filter. For the smoothing window size, 
an experimental choice of 19 epochs (9.5 min) was used. This choice 
was made because most periods of a certain sleep state in our data-
set lasted for more than 10 min.

2.4  |  Classification algorithms

Sentner et al.14 have previously demonstrated the successful 
application of tree- based machine learning algorithms, such as random 
forest, in the classification of cardiorespiratory sleep states in preterm 
infants. The extremely randomised trees classifier is another tree- 
based algorithm that uses the entire original sample, in contrast to the 

bootstrapping approach employed by random forests. Random cut 
points were selected to split the nodes during the tree construction. 
Moreover, compared to random forests, extremely randomised trees 
are considered to have less bias and computational costs.23 Hence, we 
employed both random forest and extremely randomised trees for 
comparison when classifying preterm infant sleep states. The tree- 
based classifier parameters were selected empirically. The maximum 
depth, minimum number of samples required to split an internal node, 
minimum number of samples needed to be in a leaf node and number 
of trees in the forest were set to 10, 10, 4 and 300 respectively.

As previously mentioned, the distribution of sleep states was 
highly imbalanced, with active sleep accounting for the majority 
(>70%) of the total epochs. In such cases, machine learning models 
can be heavily biased towards the majority class. This may result in a 
poor performance in the minority class. To resolve this issue, we fol-
lowed Werth et al.'s approach19 and employed a synthetic minority 
oversampling technique during model training, to increase the num-
ber of quiet sleep and wake samples. Notably, the synthetic minority 
oversampling technique was not applied to the test data.

2.5  |  Validation and evaluation

Leave- one- patient- out cross- validation was used to train and test 
the proposed method for classifying the sleep states of preterm 
infants. The full dataset was randomly split into eight folds by 
each infant, where the number of folds was equal to the number 
of infants. During each round of the leave- one- patient- out cross- 
validation, seven infants were used to train the model and the 
remaining one was used to test the trained model. The sleep 
classification results of all the infants are reported as means and 
standard deviations.

Extensively used metrics were considered first to evaluate 
the models for classifying preterm infant sleep states, including 
the overall accuracy, sensitivity, precision and confusion matrix. 

F I G U R E  1  Schematic diagram of the preprocessing of raw ECG and chest impedance respiratory signals. CI, chest impedance; CWT- SII, 
continuous wavelet transform- signal instability index; ECG, electrocardiography; VG, visibility graph.
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    |  5ZHANG et al.

However, owing to the presence of an imbalanced distribution of 
classes, the use of overall accuracy can be misleading and model 
training and optimisation can be strongly biased towards the major-
ity class.24 Cohen's kappa coefficient value, independent of chance 
agreement, has been widely accepted in assessing infant sleep clas-
sification performance. According to Landis and Koch, a kappa value 
of <0 is considered as no agreement, 0–0.20 as slight, 0.21–0.40 
as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial and 0.81–1 
as almost perfect agreement.25 In addition, we plotted the receiver 
operating characteristics curves and reported the area under the 
curve (AUC) and kappa values to distinguish between each of the 
two sleep states. These were: active sleep versus quiet sleep, quiet 
sleep versus wake, active sleep versus wake and wake versus sleep 
including active sleep and quiet sleep. The classification between 
the two states was retrained and tested using extremely randomised 
trees and all features were subjected to the same leave- one- patient- 
out cross- validation procedure. To confirm the added value contrib-
uted by the new motion and cardiorespiratory interaction features 
in sleep state classification, we compared the performance using all 
features with three other feature sets. These were one feature set 
that comprised ECG and respiratory features, one with ECG, respi-
ratory and motion features and one with ECG, respiratory and CRI 
features. The model parameters were optimised for the training data 
during each round of leave- one- patient- out cross- validation to maxi-
mise the kappa coefficient value.

3  |  RESULTS

Table 2 presents the sleep state classification performance by 
accuracy and Cohen's kappa coefficient, using all features. The 
results include leave- one- patient- out cross- validation performance 
for each infant and means and standard deviations for all infants. 
Extremely randomised trees achieved a kappa of 0.38 ± 0.09, which 
was better than the random forest approach (0.31 ± 0.14). However, 
this difference was not statistically significant examined using the 
Mann–Whitney U test (p = 0.29). Both methods outperformed the 
results obtained in previous work that just used ECGs.19

We also compared the performances of sleep classifications 
based on extremely randomised trees, using different feature sets 
(Table 3). Interestingly, combining all the features achieved the best 
performance, with reduced variability compared to the other fea-
ture sets. Notably, both cardiorespiratory interactions and motion 
features independently contributed to performance improvement. 
The confusion matrices, which were obtained using different fea-
ture sets, are shown in Figure 2. This analysis demonstrated a no-
table improvement in the detection of wake using motion features 
during sleep. In addition, cardiorespiratory interaction features 
were helpful in distinguishing quiet sleep from the other two sleep 
states.

To understand the importance of features in classifying sleep 
states, Figure 3 lists the top 10 features, ranked by their Gini impor-
tance scores in extremely randomised trees when we used all the 
features. These included the five respiratory features, four motion 
features and one cardiorespiratory interaction feature. In addition to 
the respiration signal containing important features, several motion 
features were highly ranked, indicating their important contribution 
to boosting the classification. This was because of their ability to 
detect wake and caretaking states from sleep states.

The receiver operating characteristics curves for classifying each 
of the two sleep states are shown in Figure 4 to demonstrate how 
well the algorithm could separate different sleep states. The dis-
crimination between active sleep and quiet sleep (AUC 0.93 ± 0.05, 
kappa 0.56 ± 0.12) was clearly better than that between other states, 
in particular, the discrimination between active sleep and wake (AUC 
0.68 ± 0.12, kappa 0.19 ± 0.14), which was difficult to distinguish.

4  |  DISCUSSION

This study demonstrated that preterm infant sleep state classification 
results improved when they were based on cardiorespiratory 
signals. This was because we used additional features, extracted 
from the signals, which characterised body movements and the 
interaction between cardiac and respiratory activities. In addition, 
the extremely randomised trees classifier outperformed the widely 

Subject

Random forest Extremely randomised trees

Accuracy Kappa Accuracy Kappa

1 0.72 0.40 0.76 0.49

2 0.72 0.43 0.72 0.43

3 0.92 0.33 0.89 0.47

4 0.56 0.31 0.69 0.41

5 0.72 0.50 0.67 0.42

6 0.68 0.15 0.79 0.32

7 0.53 0.16 0.67 0.30

8 0.58 0.17 0.52 0.19

Mean ± SD 0.68 ± 0.13 0.31 ± 0.14 0.71 ± 0.11 0.38 ± 0.09

TA B L E  2  Performance of preterm 
infant sleep state classification (active 
sleep, quiet sleep and wake) using random 
forest and extremely randomised trees 
based on all features.
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6  |    ZHANG et al.

TA B L E  3  Performance comparison using different feature sets in classifying preterm infant sleep states (active sleep, quiet sleep and 
wake) using extremely randomised trees.

Performance metric

Feature set

ECG and respiratory ECG, respiratory and CRI
ECG, respiratory and 
motion

ECG, respiratory, motion 
and CRI

Accuracy 0.70 ± 0.13 0.69 ± 0.16 0.70 ± 0.10 0.71 ± 0.11

Kappa 0.31 ± 0.11 0.33 ± 0.13 0.36 ± 0.09 0.38 ± 0.09

Sensitivity active sleep 0.78 ± 0.20 0.76 ± 0.18 0.76 ± 0.14 0.78 ± 0.13

Precision active sleep 0.84 ± 0.12 0.84 ± 0.11 0.85 ± 0.11 0.85 ± 0.11

Sensitivity quiet sleep 0.69 ± 0.29 0.74 ± 0.22 0.80 ± 0.21 0.80 ± 0.18

Precision quiet sleep 0.54 ± 0.16 0.53 ± 0.18 0.48 ± 0.17 0.51 ± 0.18

Sensitivity wake 0.33 ± 0.35 0.28 ± 0.24 0.34 ± 0.22 0.36 ± 0.22

Precision wake 0.39 ± 0. 41 0.52 ± 0.36 0.44 ± 0.28 0.39 ± 0.33

Note: Results are presented in mean ± SD. The best result of each performance metric is indicated in bold.
Abbreviations: CRI, cardiorespiratory interaction; ECG, electrocardiography.

F I G U R E  2  Confusion matrices in preterm infant sleep state classification (active sleep, quiet sleep and wake) using feature set (A) ECG 
and respiratory features, (B) ECG, respiratory and cardiorespiratory interaction features, (C) ECG, respiratory and motion features, (D) 
ECG, respiratory, motion and cardiorespiratory interaction, where aggregated results of all epochs were presented. AS, active sleep; ECG, 
electrocardiography; QS, quiet sleep.
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    |  7ZHANG et al.

used random forest classification algorithm, although the difference 
was not statistically significant.

As shown in Figure 3, five new features were in the list of the 
top 10 features, which comprised one cardiorespiratory interaction 
feature, five respiratory features and four motion features. The top 
three important features were respiratory features, consistent with 
the behavioural sleep annotation approach that relies heavily on 
breathing information.10 Nonetheless, ECG features should also be 
considered vital contributors to the classification and the most im-
portant ECG features made the list of the top 20 features. Heart rate 
variability during sleep, particularly quiet sleep, exhibited greater 
stability in preterm infants than during active sleep and wake.26

Motion features were also highly ranked in terms of their impor-
tance. The presence of motion artefacts has been recognised as an 
indicator of wake and/or caretaking, as previously reported. Including 
motion features in the classification scheme can significantly im-
prove the classification performance (Figure 2 and Table 3), contrib-
uting to distinguishing between quiet sleep and active sleep or wake 
with the presence of increased body movements.10 Interestingly, the 
top- ranked motion features were all extracted from motion signals 
derived from ECGs instead of respiration from the chest impedance. 
One possible reason for this is that body movements detected by 
ECG are more sensitive than respiration.27 Peng et al.18 studied a 
similar population. They reported that using the combined contin-
uous wavelet transform and signal instability indexing algorithm 
demonstrated that electrocardiography- based motion detection had 
superior performance to respiration- based detection, especially in 
detecting gross motor motion. The best cardiorespiratory interaction 

feature was sample entropy of degree, which is defined as the sam-
ple entropy of the node degree of the constructed cardiorespiratory 
interaction network. It measures the regularity or stability of cardio-
respiratory interaction patterns. A higher sample entropy of degree 
value corresponds to a lower regularity in the cardiorespiratory in-
teraction time series, which is more likely to be associated with wake 
and caretaking states.28 This indicates its ability to distinguish the 
sleep states of preterm infants. For example, Figure 2 shows that in-
cluding cardiorespiratory interaction features generally led to fewer 
false detections of active sleep, which might likely be less irregular in 
the cardiorespiratory interaction pattern compared to wake, but is 
more irregular than quiet sleep.

Combining the new features proposed in this study with exist-
ing ECG and respiration features resulted in an overall improve-
ment in classifying preterm infant sleep states. The mean kappa 
value increased from 0.31 ± 0.11 to 0.38 ± 0.09, approaching 
moderate agreement between the automated sleep state classi-
fication and human annotation and outperforming previously re-
sults reported.18 We also confirmed the advantages of using the 
extremely randomised trees classifier instead of the random for-
est algorithm (Table 2). However, a relatively large variation in the 
classification performance between subjects can be seen in that 
table. One explanation could be the marked difference in sleep 
state distribution, where, for example, subject seven had only 
four wake epochs, which was much fewer than the other subjects. 
During such a short wake period, changes in the cardiorespiratory 
activity regulated by the autonomic system were apparently not 
sufficient. Inspecting the video recording showed found that the 

F I G U R E  3  Box plots of the top 10 features in sleep state classification based on extremely randomised trees Gini importance (across 
subjects). Feature names and their description can be found in the Tables S1–S4. ET, extremely randomised trees.
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infant had no large gross body movement during wake, which led 
to the absence of strong motion artefacts in their ECG or chest 
impedance. This means that using motion features was ineffec-
tive in distinguishing wake epochs from sleep. Notably, subject 
eight had a much lower kappa value (0.19) than the other subjects. 
Figure 4 shows that the receiver operating characteristics curve 
for this subject performed poorly in distinguishing between wake, 
active sleep and quiet sleep. A closer look at the video data re-
vealed that this infant seemed to display a lot of sucking activity 
along with head and torso movements during sleep. These created 
motion artefacts in the ECG and chest impedance signals and the 
sleep epochs in those instances may have been easily misclassified 
as wake stages. In general, the existence of significant between- 
subject variability in cardiorespiratory physiology during sleep29 
limited the generalisability of the model, particularly when using a 
small dataset for training.

Preterm infants typically move considerably during sleep. In the 
early stages of their lives, they spend a lot of time in active sleep. 

They exhibit a lot of movement during this sleep state, including 
twitching, jerking and stretching.9 Movement type is a key indicator 
of the sleep state of an infant.26 Fine or subtle movements, such as 
eye, facial and finger movements, are rarely transmitted as motion 
artefacts in measured physiological signals, as this would lead to an 
imprecise estimation of real body movements. Thus, the direct mea-
surement and quantification of body movement is desirable. Based 
on the findings of previous studies,16,30 video- based technology may 
be sufficient for this purpose. Compared with a noninvasive mat-
tress, a video can capture more subtle movements, such as limb and 
facial expressions.

4.1  |  Strengths and limitations

The strength of this study was that we used cardiorespiratory 
signals obtained through routine monitoring. We extracted novel 
features from these signals and integrated them with existing 

F I G U R E  4  Receiver operating characteristics curves of binary sleep state classification for each subject and all subjects (aggregated 
results) using all features and extremely randomised trees classifier: (A) between active sleep and quiet sleep, (B) between quiet sleep and 
wake, (C) between active sleep and wake and (D) between sleep (including active sleep and quiet sleep) and wake. AUC values are presented 
for each subject and all subjects. AUC, aera under the curve; FPR, false positive rate; TPR, true positive rate.
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    |  9ZHANG et al.

features to classify sleep among preterm infants. This approach 
improved the performance of sleep classification without adding 
extra burdens to the preterm infants. However, there were several 
limitations that should be addressed in future research. Reliable 
statistical analysis and generalisability of the model can only be 
achieved by larger and more diverse datasets. The limited sample 
size reduced the meaningfulness of the results. Future studies 
should aim to collect more data from neonatal intensive care units, 
to conduct real comparisons and perform statistical analyses. 
Notably, this study did not assess the effect of age on motion and 
subsequent studies should recruit more subjects, with a range of 
gestational ages, to investigate this dimension. It is also important 
to emphasise that estimated motion data were used in this study 
to extract features related to body movement. To obtain more 
reliable results, it could be preferable to measure and quantify 
body movement directly. In addition, future research should 
explore algorithms trained with polysomnography or amplitude- 
integrated electroencephalography- based sleep scoring systems, 
to further investigate the agreement between different scoring 
approaches in preterm infants.

5  |  CONCLUSION

This study provides valuable insights into the classification of 
preterm infant sleep states, using cardiorespiratory signals and 
additional features. Our findings suggest that a combination of 
cardiorespiratory interaction and motion features, analysed using 
extremely randomised trees, led to improved performance in 
classifying sleep states. Motion features played a crucial role in 
detecting wake from sleep, while cardiorespiratory interaction 
features contributed to distinguishing between quiet sleep and 
other states. However, further research is needed to enhance the 
discrimination between active sleep and wake.

AUTHOR CONTRIBUTIONS
Dandan Zhang: Conceptualization; data curation; formal analysis; 
methodology; visualization; writing – original draft; writing – review 
and editing. Zheng Peng: Data curation; writing – original draft; writing 
– review and editing. Shaoxiong Sun: Writing – review and editing. 
Carola van Pul: Writing – review and editing. Caifeng Shan: Writing – 
review and editing. Jeroen Dudink: Writing – review and editing. Peter 
Andriessen: Supervision; writing – review and editing. Ronald M. Aarts: 
Supervision; writing – review and editing. Xi Long: Conceptualization; 
methodology; supervision; writing – review and editing.

ACKNOWLEDG EMENTS
The authors thank Jan Werth and Caiyun Ma for their insightful 
comments.

FUNDING INFORMATION
This study was supported by the Eindhoven MedTech Innovation 
Center and the China Scholarship Council (number 201806170049).

CONFLIC T OF INTERE S T S TATEMENT
The authors have no conflicts of interests to declare.

E THIC S S TATEMENT
The Ethical Committee of the Máxima Medical Center approved 
the study and the parents of the preterm infants provided written, 
informed consent.

ORCID
Dandan Zhang  https://orcid.org/0000-0002-6940-6311 
Zheng Peng  https://orcid.org/0000-0001-9301-3158 
Jeroen Dudink  https://orcid.org/0000-0003-0446-3646 
Peter Andriessen  https://orcid.org/0000-0002-5159-6874 
Ronald M. Aarts  https://orcid.org/0000-0003-3194-0700 
Xi Long  https://orcid.org/0000-0001-9505-1270 

R E FE R E N C E S
 1. Graven SN, Browne JV. Sleep and brain development. Newborn 

Infant Nurs Rev. 2008;8(4):173- 9. doi:10.1053/j.nainr.2008.10.008
 2. Mirmiran M, Maas YGH, Ariagno RL. Development of fetal and neo-

natal sleep and circadian rhythms. Sleep Med Rev. 2003;7(4):321- 
34. doi:10.1053/smrv.2002.0243cae

 3. Galland BC, Hayman RM, Taylor BJ, Bolton DPG, Sayers RM, 
Williams SM. Factors affecting heart rate variability and heart rate 
responses to tilting in infants aged 1 and 3 months. Pediatr Res. 
2000;48(3):360- 8. doi:10.1203/00006450- 200009000- 00017

 4. Lehtonen L, Martin RJ. Ontogeny of sleep and awake states 
in relation to breathing in preterm infants. Semin Neonatol. 
2004;9(3):229- 38. doi:10.1016/j.siny.2003.09.002

 5. Berry RB, Brooks R, Gamaldo C, et al. AASM scoring manual up-
dates for 2017 (version 2.4). J Clin Sleep Med. 2017;13(5):665- 6. 
doi:10.5664/jcsm.6576

 6. De Groot ER, Bik A, Sam C, et al. Creating an optimal observa-
tional sleep stage classification system for very and extremely 
preterm infants. Sleep Med. 2022;90:167- 75. doi:10.1016/j.
sleep.2022.01.020

 7. Dereymaeker A, Pillay K, Vervisch J, et al. Review of sleep- EEG 
in preterm and term neonates. Early Hum Dev. 2017;113:87- 103. 
doi:10.1016/j.earlhumdev.2017.07.003

 8. Calciolari G, Montirosso R. The sleep protection in the preterm in-
fants. J Matern Fetal Neonatal Med. 2011;24(Suppl 1):12- 4. doi:10.
3109/14767058.2011.607563

 9. Werth J, Atallah L, Andriessen P, Long X, Zwartkruis- Pelgrim E, 
Aarts RM. Unobtrusive sleep state measurements in preterm in-
fants -  a review. Sleep Med Rev. 2017;32:109- 22. doi:10.1016/j.
smrv.2016.03.005

 10. Otte RA, Long X, Westerink J. A behavioral approach to annotat-
ing sleep in infants: building on the classic framework. Physiol Rep. 
2022;10(3):e15178. doi:10.14814/phy2.15178

 11. De Groot ER, Knoop MS, van den Hoogen A, et al. The value of car-
diorespiratory parameters for sleep state classification in preterm 
infants: a systematic review. Sleep Med Rev. 2021;58:101462. 
doi:10.1016/J.SMRV.2021.101462

 12. Harper RM, Schechtman VL, Kluge KA. Machine classifica-
tion of infant sleep state using cardiorespiratory measures. 
Electroencephalogr Clin Neurophysiol. 1987;67(4):379- 87. 
doi:10.1016/0013- 4694(87)90126- x

 13. Werth J, Radha M, Andriessen P, Aarts RM, Long X. Deep learn-
ing approach for ECG- based automatic sleep state classification in 
preterm infants. Biomed Signal Process Control. 2020;56:101663. 
doi:10.1016/J.BSPC.2019.101663

 16512227, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/apa.17211 by T

echnical U
niversity E

indhoven, W
iley O

nline L
ibrary on [19/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-6940-6311
https://orcid.org/0000-0002-6940-6311
https://orcid.org/0000-0001-9301-3158
https://orcid.org/0000-0001-9301-3158
https://orcid.org/0000-0003-0446-3646
https://orcid.org/0000-0003-0446-3646
https://orcid.org/0000-0002-5159-6874
https://orcid.org/0000-0002-5159-6874
https://orcid.org/0000-0003-3194-0700
https://orcid.org/0000-0003-3194-0700
https://orcid.org/0000-0001-9505-1270
https://orcid.org/0000-0001-9505-1270
https://doi.org//10.1053/j.nainr.2008.10.008
https://doi.org//10.1053/smrv.2002.0243cae
https://doi.org//10.1203/00006450-200009000-00017
https://doi.org//10.1016/j.siny.2003.09.002
https://doi.org//10.5664/jcsm.6576
https://doi.org//10.1016/j.sleep.2022.01.020
https://doi.org//10.1016/j.sleep.2022.01.020
https://doi.org//10.1016/j.earlhumdev.2017.07.003
https://doi.org//10.3109/14767058.2011.607563
https://doi.org//10.3109/14767058.2011.607563
https://doi.org//10.1016/j.smrv.2016.03.005
https://doi.org//10.1016/j.smrv.2016.03.005
https://doi.org//10.14814/phy2.15178
https://doi.org//10.1016/J.SMRV.2021.101462
https://doi.org//10.1016/0013-4694(87)90126-x
https://doi.org//10.1016/J.BSPC.2019.101663


10  |    ZHANG et al.

 14. Sentner T, Wang X, de Groot ER, et al. The sleep well baby project: 
an automated real- time sleep–wake state prediction algorithm in 
preterm infants. Sleep. 2022;45(10):zsac143. doi:10.1093/sleep/
zsac143

 15. Zhang D, Long X, Xu L, et al. Characterizing cardiorespiratory in-
teraction in preterm infants across sleep states using visibility 
graph analysis. J Appl Physiol. 2021;130(4):1015- 24. doi:10.1152/
japplphysiol.00333.2020

 16. Long X, Espina J, Otte RA, Wang W, Aarts RM, Andriessen P. Video- 
based actigraphy is an effective contact- free method of assess-
ing sleep in preterm infants. Acta Paediatr. 2021;110(6):1815- 6. 
doi:10.1111/apa.15740

 17. Schoch SF, Kurth S, Werner H. Actigraphy in sleep research with 
infants and young children: current practices and future bene-
fits of standardized reporting. J Sleep Res. 2021;30(3):e13134. 
doi:10.1111/jsr.13134

 18. Peng Z, Lorato I, Long X, et al. Body Motion Detection in 
Neonates Based on Motion Artifacts in Physiological Signals from 
a Clinical Patient Monitor. Annu Int Conf IEEE Eng Med Biol Soc. 
2021;2021:416- 9. doi:10.1109/EMBC46164.2021.9630133

 19. Werth J, Serteyn A, Andriessen P, Aarts RM, Long X. Automated 
preterm infant sleep staging using capacitive electrocardiogra-
phy. Physiol Meas. 2019;40(5):055003. doi:10.1088/1361- 6579/
ab1224

 20. Fonseca P, Long X, Radha M, Haakma R, Aarts RM, Rolink J. Sleep 
stage classification with ECG and respiratory effort. Physiol Meas. 
2015;36(10):2027- 40. doi:10.1088/0967- 3334/36/10/2027

 21. Wijshoff RW, Mischi M, Aarts RM. Reduction of periodic mo-
tion artifacts in Photoplethysmography. IEEE Trans Biomed Eng. 
2017;64(1):196- 207. doi:10.1109/TBME.2016.2553060

 22. Long X, Fonseca P, Aarts RM, Haakma R, Foussier J. Modeling cardio-
respiratory interaction during human sleep with complex networks. 
Appl Phys Lett. 2014;105(20):203701. doi:10.1063/1.4902026

 23. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach 
Learn. 2006;63(1):3- 42. doi:10.1007/s10994- 006- 6226- 1

 24. He H, Ma Y. Imbalanced learning: foundations, algorithms, and ap-
plications. 1st ed. Wiley- IEEE Press; 2013.

 25. Landis JR, Koch GG. The measurement of observer agreement for 
categorical data. Biometrics. 1977;33(1):159- 74.

 26. Yiallourou SR, Sands SA, Walker AM, Horne RSC. Maturation of 
heart rate and blood pressure variability during sleep in term- born 
infants. Sleep. 2012;1:177- 86. doi:10.5665/sleep.1616

 27. Pawar T, Anantakrishnan NS, Chaudhuri S, Duttagupta SP. 
Impact analysis of body movement in ambulatory ECG. Annu Int 
Conf IEEE Eng Med Biol Soc. 2007;2007:5453- 6. doi:10.1109/
IEMBS.2007.4353579

 28. Lucchini M, Pini N, Fifer W, Burtchen N, Signorini M. Entropy in-
formation of cardiorespiratory dynamics in neonates during sleep. 
Entropy. 2017;19(5):225. doi:10.3390/e19050225

 29. Long X, Haakma R, Leufkens TRM, Fonseca P, Aarts RM. Effects 
of between-  and within- subject variability on autonomic cardiore-
spiratory activity during sleep and their limitations on sleep stag-
ing: a multilevel analysis. Comput Intell Neurosci. 2015;2015:1- 17. 
doi:10.1155/2015/583620

 30. Awais M, Long X, Yin B, et al. A hybrid DCNN- SVM model for 
classifying neonatal sleep and wake states based on facial expres-
sions in video. IEEE J Biomed Health Inform. 2021;25(5):1441- 9. 
doi:10.1109/JBHI.2021.3073632

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Zhang D, Peng Z, Sun S, van Pul C, 
Shan C, Dudink J, et al. Characterising the motion and 
cardiorespiratory interaction of preterm infants can improve 
the classification of their sleep state. Acta Paediatr. 
2024;00:1–10. https://doi.org/10.1111/apa.17211

 16512227, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/apa.17211 by T

echnical U
niversity E

indhoven, W
iley O

nline L
ibrary on [19/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org//10.1093/sleep/zsac143
https://doi.org//10.1093/sleep/zsac143
https://doi.org//10.1152/japplphysiol.00333.2020
https://doi.org//10.1152/japplphysiol.00333.2020
https://doi.org//10.1111/apa.15740
https://doi.org//10.1111/jsr.13134
https://doi.org//10.1109/EMBC46164.2021.9630133
https://doi.org//10.1088/1361-6579/ab1224
https://doi.org//10.1088/1361-6579/ab1224
https://doi.org//10.1088/0967-3334/36/10/2027
https://doi.org//10.1109/TBME.2016.2553060
https://doi.org//10.1063/1.4902026
https://doi.org//10.1007/s10994-006-6226-1
https://doi.org//10.5665/sleep.1616
https://doi.org//10.1109/IEMBS.2007.4353579
https://doi.org//10.1109/IEMBS.2007.4353579
https://doi.org//10.3390/e19050225
https://doi.org//10.1155/2015/583620
https://doi.org//10.1109/JBHI.2021.3073632
https://doi.org/10.1111/apa.17211

	Characterising the motion and cardiorespiratory interaction of preterm infants can improve the classification of their sleep state
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Data and sleep annotation
	2.2|Signal preprocessing
	2.3|Features
	2.4|Classification algorithms
	2.5|Validation and evaluation

	3|RESULTS
	4|DISCUSSION
	4.1|Strengths and limitations

	5|CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	ETHICS STATEMENT
	REFERENCES


