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Abstract

Computer algebra can be used to compute the symbolic transfer function
of a loudspeaker cross over filter as a function of frequency, filter compo-
nents and loudspeaker impedance. We describe a key ingredient of this kind
in a program to analyse RLC-loudspeaker cross-over filters developed and
implemented at the Philips Research Lab., Eindhoven.

1. Introduction

In this paper we study linear networks consisting of one-ports only, which we
call the branches. For a branch two variables are of primary interest: the voltage
across the branch and the current through the branch. For example, a resistance
R is characterised by V = IR, and a capacitance C is characterised by i =
Cdv/dt, or I = CsV in the frequency domain.
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When a number of branches are connected, we have a lumped network. An
example of a loudspeaker modelled by a lumped network is pictured in Figure
1.
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Figure 1. A lumped element model of a loudspeaker

In Figure 1 the symbols have the following meaning:
Re: DC-resistance of the voice coil
Le: Self inductance of the voice coil
L: Electric analogue of the cone mass
C: Electric analogue of the spider spring

Any lumped network obeys the Kirchhoff laws giving linear constraints on the
branch currents and voltages. Network topology (also called configuration) deals
with those properties of the lumped networks which are related to the intercon-
nection of the branches only.

In filter design, one usually starts by proposing a reasonable network topol-
ogy, and by selecting initial element values. The actual frequency response is
then calculated and compared with the specified response. In this approach, the
response of a network has to be calculated at many frequency points. Obviously,
if a symbolic transfer function, that is, a symbolic expression for V,y:/Vin (or
I ut/Iin, etc.), can be computed first, then repeated analysis of the network
follows by substitution of the numerical values.

2. Acknowledgements

This paper is based on a program developed and implemented by Ing. R.M.
Aarts and R.G.J Janmaat at the Philips Research Laboratories, Eindhoven (see

[2)).
3. The Problem

For some years a filter optimisation package FOPT, developed at the Philips
Research Laboratories, is successfully used (see [1]). The inputs for FOPT are
loudspeaker data (e.g., loudspeaker characteristics), target data (e.g., desired
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sound pressure response and power response) and a PASCAL procedure RESP
which is used to compute the input impedance and the voltage transfer function
of the filter as a function of frequency f, filter components C and the loudspeaker
impedance LS.

The numerical analysis of the filter is done by the user, i.e., the user must
write the PASCAL code based on the topology of the filter. The symbolical
analysis of the filter is also performed by the user and results in the Laplace
domain coefficients of the voltage transfer function as a function of filter com-
ponents C and the lumped element parameters L of the s-domain model used
to represent the loudspeaker.

The drawbacks of this program are clear: user intervention is required for
both the numerical and the symbolical analysis on a case by case basis. The
(PASCAL) code to compute the numerical transfer function can be computed
from the symbolic transfer function of the RLC-filter. Therefore, the main task
is to use computer algebra to compute the symbolic transfer function of a filter.

4. The Mathematical Model

We will restrict ourselves to linear time-invariant two-port networks that consist
of resistor R, conductor G, inductor L and capacitor C elements only. Figure 2
shows a general two-port network. It is driven by an ideal unity current source
L, and loaded with a complex impedance Z;s. The network consists of one-
ports only. The nodes n; are numbered from 0 to N. The input nodes are ng
and n,. The output nodes are n, and ng. They are referred to as I/O-nodes.
Figure 3 shows a simple example. There, for instance, Y, and Y; are one-ports
connecting the nodes ng and n;. The quantity Y; also stands for the admittance
of the one-port, which is the inverse of its impedance.

ny Passive nﬂ
lY one-ports E] ZLS
"o o
Figure 2. A two-port network

For the network of Figure 2 with node ng grounded and a unity current source,
the input impedance is defined as

Z‘Y(Saz) = V’y(saz)’ (41)

where s is the frequency variable in the Laplace domain, z is the parameter
vector containing load and network parameters and V,, is the input node voltage
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with respect to the ground. The voltage transfer function for the network of
Figure 2 is given by

_ Va(s,z) = Vals, z)
N Vy(s, ) '

where g, 14, nq and ng belong to {0,1,..., N} such that ng,n, are input and
na,ng are output nodes and V; is the node voltage with respect to the ground.

Hg,

(4.2)

The indefinite nodal method (see [4]) provides a set of non-singular linear
equations from which all node voltages can be solved. Let Y = (y;;) be the
matrix whose

(i) diagonal entries are y;; = Y admittances connected to n;.
(ii) off-diagonal entries are yj, = — > admittances connected to n; and ny.

The indefinite nodal equation is then defined as follows
YV =1J (4.3)
where V = (Vj, ..., Vy)T denotes the node voltage vector and J = (Jy, ..., Jn),
J; = Z currents from independent sources entering n;.

To transform the indefinite nodal equation into a linear nonsingular system that
can be solved, we shall use the fact that grounding the k** node comes down to
deleting the k** row and column of Y.

A two-port network consisting of one-ports only has a symmetric admittance
matrix (Y = Y') and an admittance matrix of a one-port connected between
nodes k and [ has entries yxr = yuu = y and Y = yix = —Y, where y denotes the
admittance connected to k.

4.1. A loudspeaker

A loudspeaker can be modelled by a lumped element network (see Figure 1).
The impedance of a lumped element model is given by

sRme

ZL5=Re+sLe+82Q/wO+s+Qwo.

Given the symbolic transfer function H(s) of the corresponding filter, we make

the following transformation
2z-1

= = )

Tz+1
where T is the sampling frequency. Once the z-domain transfer function is
known, it can be made suitable for implementation on a Digital Signal Processor

(see [1]).

8
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5. The Mathematics

To solve the symbolic linear system (4.3) with the ny node grounded, we shall
use computer algebra. For a small number of nodes this can be done directly.
If the number of nodes becomes large, it is worthwhile to reduce the number of
nodes.

To minimise the number of node voltages and network parameters, we shall
use the following reduction rules:

- The P-reduction rule. In a two-port network M parallel one-port connec-
tions can be replaced by one new one-port with new admittance yp given
by the sum of the old admittances

M
yM =) Uk (5.1)
k=1

- The Sy -reduction rule. An internal node voltage can be removed from
the nodal equation by a star to maze transformation. Here, a star shape
with M + 1 nodes and M branches is transformed into a maze structure
with M nodes and M(M — 1)/2 branches. Thus, the number of network
branches increases by M(M — 3)/2, but, more significantly, the number
of node voltages reduces by one. If the center node is n;, then the new
admittances are given by

YitYi;
Yii = = - (5.2)
Ek:l Yri

A star to maze transformation can introduce new parallel one-ports. Re-
mark that, if the reduction of a star structure with M > 2 branches into a maze
structure is followed by a parallel reduction, then the resulting structure has
precisely M new star shaped structures with at least M — 1 branches. This
implies that a P o Sjs reduction should be followed by a P o Sp_; reduction if
M > 2 and by P o Sy reduction if M = 2. This yields the following reduction
algorithm that eliminates all internal nodes of a star structure with M branches.

apply P reduction rule
while “there are internal node voltages™ do
apply P*S_M reduction rule;
if M >2 then
M= M-1;
else
M := M+1;
od
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After the algorithm has been applied to all star structures, we can ground the
ng node and the definite nodal equation can be solved using Cramer’s rule. This
yields the symbolic voltage transfer function Hg, for the network.

Next we illustrate the algorithm with a simple example. Consider a low pass
loudspeaker crossover filter, where all one-ports are represented as admittances.

q\ Jz'\

A\ o/
|:Y2:| i

—0)

\\Y

Figure 3. Example of a network

Set
Y = 1/(3L1 + R, ),
Y = sCh,
Y3 = sC,
Yy =1/R,,
Ys =1/Z;s.

Using the definitions we find y=1, a =0, § =2 and
= (LI) RLwcla 021 Rl: ZLS)T~

The indefinite nodal equation is given by

Yo+Yi+Y; 0 -Y.-Y -Y, Vo -1
0 Y1 -1 0 iwl_ 1
-2-Y% -1 n+¥e+¥Va+Y¥ -Y; Vaf | O
-Y, 0 -Y; Ya+Y, Va 0

Minimisation of the indefinite nodal equation using the reduction algorithm pro-
ceeds as follows. First the P-cycle will detect a parallel port. A new admittance
element is created, say Yg, and the nodal equation becomes

Yi+Ys 0 -Ys -Y, Vo -1
0 " - 0 il_|[ 1
-Ys -1 n+Ya+Ys -Ys Vo] O
-Y, 0 -Y; Ys+Y, V3 0
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Next the P x S, step will detect the internal node voltages V3 as candidate for
minimisation and the nodal equation becomes

Ys 0 -Y; Vo -1
0 Y1 —Y1 V], = 1 )
-Y» -1 "+Y¥ V2 0
where
YG - - Y2 + },51
Y7 =YsYy/(Ys + Yy),
Yo =Y; + Y5

There are no internal nodes nor parallel structures left and the algorithm has
come to a stop. To solve the resulting nodal equation, we ground ng and then
solve the remaining system using Cramer’s rule.

The transfer functions of the filter are

v _h+Ys
a=%=7y
Y,
Hy=V/Vi=—"=_.
20 = Vo/Vi Vit Y,

Substituting the values of Y; and the numerical value of z,
z=(1,1,1,1,1,2)7,

we obtain the transfer function as a function of s and the impedance Z;5 = Z:

Z
1+Z+(1+22Z)s+ 252"

Hz(](s, Z) =

6. The Computer Algebra

The above described method to compute the symbolic transfer function of linear
time-invariant two-port networks is implemented using the REDUCE computer
algebra system. The program is called “netprogram” and has two main func-
tions:

- from the filter specification, the program generates PASCAL code that can
be used to calculate the input impedance and symbolic s-domain voltage
transfer function of the filter;

- from the filter component data, lumped elements parameters of the loud-
speaker and the symbolic s-domain voltage transfer function, the program
generates the z-domain biquad coefficients that can be used as a start value
for the curve-fitting optimisation package CURFIT.

The program listings are presented in [2].
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7. Interpretation of the Results

In filter optimisation, a network topology is first proposed, and initial element
values are selected. The actual frequency response is then calculated and com-
pared with the specified response. In this approach, the response of a filter has
to be calculated at many frequency points. Using computer algebra one can
solve the symbolic nodal equation. For a small number of nodes this can be
done directly. For a large number of nodes one can use the reduction rules as
proposed in §5. As a result we find a symbolic transfer function Voy: /Vin and the
electrical input impedance Z;. Given these symbolic transfer functions, repeated
analysis of the filter follows by substitution of the numerical values.

8. Conclusion and Discussion

The use of computer algebra enables us to write a program that computes the
symbolic transfer function of a filter based on the topology of the filter. Fur-
thermore, given the symbolic transfer function, the numerical transfer function
follows by substitution. The computer algebra program can be used to generate
the (PASCAL) code which can be used to calculate the voltage transfer function
and input impedance of a filter directly (see [2]).
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